September  2007, 6(3): 819-827. doi: 10.3934/cpaa.2007.6.819

Localization operator and digital communication capacity of channel


LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China, China, China

Received  May 2005 Revised  August 2006 Published  June 2007

In mathematical language, the communication model of some digital information channel can be described as the self-adjoint operator $Q_T P_\Omega Q_T$ on $L^2(R)$, where $T$ and $\Omega$ are constants. $T$ is called signal peroid and $\Omega$ is called channel's bandwidth. By computing the eigenvalues and the corresponding eigenfunctions of the compact self-adjoint operator $Q_T P_\Omega Q_T$, the conclusion of Landau, Pollak and Slepian shows that about $2\Omega T$ bits data can be transmitted by this channel within time $T$ when $\Omega T$ is sufficiently large. Considering the realistic communication model, this paper points out that in one signal period $T$, at most $2r\Omega T$ can be transmitted with $r$ ($r\in (0,1)$) dependent on some given threshold $\eta $.
Citation: Lizhong Peng, Shujun Dang, Bojin Zhuang. Localization operator and digital communication capacity of channel. Communications on Pure and Applied Analysis, 2007, 6 (3) : 819-827. doi: 10.3934/cpaa.2007.6.819

Linet Ozdamar, Dilek Tuzun Aksu, Elifcan Yasa, Biket Ergunes. Disaster relief routing in limited capacity road networks with heterogeneous flows. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1367-1380. doi: 10.3934/jimo.2018011


Lassi Päivärinta, Valery Serov. Recovery of jumps and singularities in the multidimensional Schrodinger operator from limited data. Inverse Problems and Imaging, 2007, 1 (3) : 525-535. doi: 10.3934/ipi.2007.1.525


Sarah Bailey Frick. Limited scope adic transformations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 269-285. doi: 10.3934/dcdss.2009.2.269


Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023


Aili Wang, Yanni Xiao, Huaiping Zhu. Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences & Engineering, 2018, 15 (3) : 739-764. doi: 10.3934/mbe.2018033


Philip Gerlee, Alexander R. A. Anderson. Diffusion-limited tumour growth: Simulations and analysis. Mathematical Biosciences & Engineering, 2010, 7 (2) : 385-400. doi: 10.3934/mbe.2010.7.385


Raul Borsche, Axel Klar, T. N. Ha Pham. Nonlinear flux-limited models for chemotaxis on networks. Networks and Heterogeneous Media, 2017, 12 (3) : 381-401. doi: 10.3934/nhm.2017017


Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems and Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77


Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151


Yan-Xin Chai, Steven Ji-Fan Ren, Jian-Qiang Zhang. Managing piracy: Dual-channel strategy for digital contents. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021100


Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341


Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic and Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035


Sunmi Lee, Romarie Morales, Carlos Castillo-Chavez. A note on the use of influenza vaccination strategies when supply is limited. Mathematical Biosciences & Engineering, 2011, 8 (1) : 171-182. doi: 10.3934/mbe.2011.8.171


Philippe Michel, Bhargav Kumar Kakumani. GRE methods for nonlinear model of evolution equation and limited ressource environment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6653-6673. doi: 10.3934/dcdsb.2019161


Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148


Julia Amador, Mariajesus Lopez-Herrero. Cumulative and maximum epidemic sizes for a nonlinear SEIR stochastic model with limited resources. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3137-3151. doi: 10.3934/dcdsb.2017211


Min Zhu, Zhigui Lin. Modeling the transmission of dengue fever with limited medical resources and self-protection. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 957-974. doi: 10.3934/dcdsb.2018050


Yinggao Zhou, Jianhong Wu, Min Wu. Optimal isolation strategies of emerging infectious diseases with limited resources. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1691-1701. doi: 10.3934/mbe.2013.10.1691


Xiaojuan Deng, Xing Zhao, Mengfei Li, Hongwei Li. Limited-angle CT reconstruction with generalized shrinkage operators as regularizers. Inverse Problems and Imaging, 2021, 15 (6) : 1287-1306. doi: 10.3934/ipi.2021019


Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005

2020 Impact Factor: 1.916


  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]