September  2008, 7(5): 1179-1191. doi: 10.3934/cpaa.2008.7.1179

Global existence of solutions for subcritical quasi-geostrophic equations

1. 

Département de Mathématiques, Faculté des Sciences de Bizerte, Tunisia

2. 

Département de Mathématiques, Faculté des Sciences de Monastir, Tunisia

Received  May 2007 Revised  January 2008 Published  June 2008

We prove the persistence of the regularity in the Besov norm spaces for the solutions of the subcritical Quasi-Geostrophic Equations with small size initial data in $\dot B^{-(2\alpha-1),\infty}_\infty$.
Citation: May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179
[1]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[2]

Tsukasa Iwabuchi. On analyticity up to the boundary for critical quasi-geostrophic equation in the half space. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1209-1224. doi: 10.3934/cpaa.2022016

[3]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[4]

Ludovic Godard-Cadillac. Vortex collapses for the Euler and Quasi-Geostrophic models. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022012

[5]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[6]

T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171

[7]

Carina Geldhauser, Marco Romito. Point vortices for inviscid generalized surface quasi-geostrophic models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2583-2606. doi: 10.3934/dcdsb.2020023

[8]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5135-5148. doi: 10.3934/dcdsb.2020336

[10]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6377-6385. doi: 10.3934/dcdsb.2021023

[11]

Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525

[12]

Colin Cotter, Dan Crisan, Darryl Holm, Wei Pan, Igor Shevchenko. Modelling uncertainty using stochastic transport noise in a 2-layer quasi-geostrophic model. Foundations of Data Science, 2020, 2 (2) : 173-205. doi: 10.3934/fods.2020010

[13]

Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277

[14]

T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119

[15]

Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133

[16]

Eleftherios Gkioulekas, Ka Kit Tung. Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 293-314. doi: 10.3934/dcdsb.2007.7.293

[17]

Tongtong Liang, Yejuan Wang. Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4697-4726. doi: 10.3934/dcdsb.2020309

[18]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093

[19]

Samira Amraoui, Didier Auroux, Jacques Blum, Emmanuel Cosme. Back-and-forth nudging for the quasi-geostrophic ocean dynamics with altimetry: Theoretical convergence study and numerical experiments with the future SWOT observations. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022058

[20]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]