-
Previous Article
Numerical mountain pass solutions of Ginzburg-Landau type equations
- CPAA Home
- This Issue
-
Next Article
The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains
Convexity of level curves for solutions to semilinear elliptic equations
1. | Rose-Hulman Institute of Technology, Department of Mathematics, Terre Haute, IN 47803, United States |
[1] |
Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034 |
[2] |
Tomasz Komorowski, Adam Bobrowski. A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3495-3502. doi: 10.3934/dcdss.2020248 |
[3] |
Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789 |
[4] |
Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151 |
[5] |
H. O. Fattorini. The maximum principle in infinite dimension. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557 |
[6] |
Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure and Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024 |
[7] |
Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897 |
[8] |
Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054 |
[9] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[10] |
Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499 |
[11] |
Henri Berestycki, Juncheng Wei. On least energy solutions to a semilinear elliptic equation in a strip. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1083-1099. doi: 10.3934/dcds.2010.28.1083 |
[12] |
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 |
[13] |
Mingshang Hu. Stochastic global maximum principle for optimization with recursive utilities. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 1-. doi: 10.1186/s41546-017-0014-7 |
[14] |
Joseph A. Iaia. Localized radial solutions to a semilinear elliptic equation in $\mathbb{R}^n$. Conference Publications, 1998, 1998 (Special) : 314-326. doi: 10.3934/proc.1998.1998.314 |
[15] |
Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122 |
[16] |
Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795 |
[17] |
Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control and Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011 |
[18] |
Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure and Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399 |
[19] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016 |
[20] |
Philip N. J. Eagle, Steven D. Galbraith, John B. Ong. Point compression for Koblitz elliptic curves. Advances in Mathematics of Communications, 2011, 5 (1) : 1-10. doi: 10.3934/amc.2011.5.1 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]