# American Institute of Mathematical Sciences

November  2008, 7(6): 1443-1482. doi: 10.3934/cpaa.2008.7.1443

## Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation

 1 Department of Mathematics and Infomation Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi,Tokyo 192-0397 2 Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Received  August 2007 Revised  March 2008 Published  August 2008

In this paper, we are concerned with stationary solutions to the following reaction diffusion system which is called the Gierer-Meinhardt system:

$A_t=\varepsilon^2 \Delta A-A+\frac{A^2}{H(1+kA^2)},\ A>0,\$ in $\Omega\times (0,\infty),$

$\tau H_t=D\Delta H-H+A^2,\ H>0,\$ in $\Omega \times (0,\infty),$

$\frac{\partial A}{\partial \nu}=\frac{\partial H}{\partial \nu}=0,\$ on $\partial \Omega\times (0,\infty),$

where $\varepsilon>0$, $\tau \geq 0$, $k>0$. The unknowns $A=A(x,t)$, $H=H(x,t)$ represent the concentrations of the activator and the inhibitor at a point $x\in \Omega \subset R^N$ and at a time $t>0$. Here $\Delta$ := $\sum_{j=1}^N\frac{\partial^2}{\partial x^2_j}$ is the Laplace operator in $R^N$, $\Omega$ is a bounded smooth domain in $R^N$, and $\nu=\nu(x)$ is the outer unit normal at $x\in \partial \Omega$. When $\Omega$ is an $x_N$-axially symmetric domain and $2\leq N\leq 5$, for sufficiently small $\varepsilon>0$ and sufficiently large $D>0$ we construct a multi-peak stationary solution peaked at arbitrarily chosen intersections of $x^N$-axis and $\partial \Omega$, under the condition that $4k\varepsilon^{-2N}|\Omega|^2$ converges to some $k_0\in[0,\infty)$ as $\varepsilon\to 0$.

Citation: Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443
 [1] Juncheng Wei, Matthias Winter. On the Gierer-Meinhardt system with precursors. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 363-398. doi: 10.3934/dcds.2009.25.363 [2] Manuel del Pino, Patricio Felmer, Michal Kowalczyk. Boundary spikes in the Gierer-Meinhardt system. Communications on Pure and Applied Analysis, 2002, 1 (4) : 437-456. doi: 10.3934/cpaa.2002.1.437 [3] Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583 [4] Shin-Ichiro Ei, Kota Ikeda, Yasuhito Miyamoto. Dynamics of a boundary spike for the shadow Gierer-Meinhardt system. Communications on Pure and Applied Analysis, 2012, 11 (1) : 115-145. doi: 10.3934/cpaa.2012.11.115 [5] Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885 [6] Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651 [7] Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks and Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291 [8] Rui Peng, Xianfa Song, Lei Wei. Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4489-4505. doi: 10.3934/dcds.2017192 [9] Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033 [10] Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 [11] Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022103 [12] Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158 [13] Mengxin Chen, Ranchao Wu, Yancong Xu. Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2275-2312. doi: 10.3934/dcdsb.2021132 [14] Jan-Phillip Bäcker, Matthias Röger. Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1139-1155. doi: 10.3934/cpaa.2022013 [15] Nancy Khalil, David Iron, Theodore Kolokolnikov. Stability and dynamics of spike-type solutions to delayed Gierer-Meinhardt equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022117 [16] Martin Baurmann, Wolfgang Ebenhöh, Ulrike Feudel. Turing instabilities and pattern formation in a benthic nutrient-microorganism system. Mathematical Biosciences & Engineering, 2004, 1 (1) : 111-130. doi: 10.3934/mbe.2004.1.111 [17] Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597 [18] Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 [19] H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705 [20] Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

2021 Impact Factor: 1.273