-
Previous Article
Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation
- CPAA Home
- This Issue
-
Next Article
On a class of anisotropic nonlinear elliptic equations in $\mathbb R^N$
Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms
1. | Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS - Université de Rouen, Avenue de l'Université, BP.12, 76801 Saint-Étienne du Rouvray, France |
2. | Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Universitá di Napoli "Federico II", via Cintia, I-80126 Napoli |
$-d i v((1+|\nabla u|^2)^{(p-2)/2} \nabla u)-d i v(c(x) (1+|u|^2)^{(\tau+1)/2}) $
$+b(x) (1+|\nabla u|^2)^{(\sigma+1)/2}=f \ i n \ \mathcal D'(\Omega)\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
$u\in W^{1,p}_0(\Omega)\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
where $\Omega$ is a bounded open subset of $\mathbb R^N$ $(N\ge 2)$, $p$ is a real number $\frac{2N}{N+1}< p <+\infty$, the coefficients $c(x)$ and $b(x)$ belong to suitable Lebesgue spaces, $f$ is an element of the dual space $W^{-1,p'}(\Omega)$ and $\tau$ and $\sigma$ are positive constants which belong to suitable intervals specified in Theorem 2.1, Theorem 2.2 and Theorem 2.3.
[1] |
Maria Francesca Betta, Olivier Guibé, Anna Mercaldo. Uniqueness for Neumann problems for nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1023-1048. doi: 10.3934/cpaa.2019050 |
[2] |
Leszek Gasiński, Liliana Klimczak, Nikolaos S. Papageorgiou. Nonlinear noncoercive Neumann problems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1107-1123. doi: 10.3934/cpaa.2016.15.1107 |
[3] |
Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293 |
[4] |
Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005 |
[5] |
Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 857-864. doi: 10.3934/dcdss.2012.5.857 |
[6] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[7] |
Maria Michaela Porzio. Existence of solutions for some "noncoercive" parabolic equations. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 553-568. doi: 10.3934/dcds.1999.5.553 |
[8] |
Wanwan Wang, Hongxia Zhang, Huyuan Chen. Remarks on weak solutions of fractional elliptic equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 335-340. doi: 10.3934/cpaa.2016.15.335 |
[9] |
M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure and Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653 |
[10] |
Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685 |
[11] |
Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure and Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187 |
[12] |
Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025 |
[13] |
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213 |
[14] |
Ahmed Aberqi, Jaouad Bennouna, Omar Benslimane, Maria Alessandra Ragusa. Weak solvability of nonlinear elliptic equations involving variable exponents. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022105 |
[15] |
Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057 |
[16] |
Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828 |
[17] |
Kunquan Lan, Wei Lin. Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 849-861. doi: 10.3934/dcdsb.2016.21.849 |
[18] |
Craig Cowan. Uniqueness of solutions for elliptic systems and fourth order equations involving a parameter. Communications on Pure and Applied Analysis, 2016, 15 (2) : 519-533. doi: 10.3934/cpaa.2016.15.519 |
[19] |
Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631 |
[20] |
Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349-358. doi: 10.3934/proc.2009.2009.349 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]