March  2008, 7(2): 211-227. doi: 10.3934/cpaa.2008.7.211

Discrete Schrödinger equations and dissipative dynamical systems


Universite Cadi Ayyad, Faculte des Sciences et Techniques, Avenue Abdelkrim Khattabi, BP 549, Marrakech


Université Cadi Ayyad, Faculté des sciences et techniques, Gueliz, BP 549 Marrakech, Morocco


Laboratoire de Mathématiques Paul Painlevé, CNRS, UMR 8524, Bât. M2, Université de Lille 1, 59655 Villeneuve d'Ascq cedex, France


LAMFA CNRS UMR 6140, Université de Picardie Jules Verne, 33 rue Saint-Leu 80039 Amiens cedex, France


Universite de Picardie Jules Verne, LAMFA UMR 7352, 33 rue Saint-Leu, 80039 Amiens cedex

Received  February 2007 Revised  July 2007 Published  December 2007

We introduce a Crank-Nicolson scheme to study numerically the long-time behavior of solutions to a one dimensional damped forced nonlinear Schrödinger equation. We prove the existence of a smooth global attractor for these discretized equations. We also provide some numerical evidences of this asymptotical smoothing effect.
Citation: Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure and Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

Carolyn Mayer, Kathryn Haymaker, Christine A. Kelley. Channel decomposition for multilevel codes over multilevel and partial erasure channels. Advances in Mathematics of Communications, 2018, 12 (1) : 151-168. doi: 10.3934/amc.2018010


Rolf Bronstering. Some computational aspects of approximate inertial manifolds and finite differences. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 417-454. doi: 10.3934/dcds.1996.2.417


Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103


Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025


Trygve K. Karper. Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 993-1023. doi: 10.3934/dcdss.2014.7.993


Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure and Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297


Jinchao Xu. The single-grid multilevel method and its applications. Inverse Problems and Imaging, 2013, 7 (3) : 987-1005. doi: 10.3934/ipi.2013.7.987


Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004


Qiushuang Wang, Run Xu. A review of definitions of fractional differences and sums. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022013


Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023


Nguyen Hai Son. Solution stability to parametric distributed optimal control problems with finite unilateral constraints. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021047


Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024


Angkana Rüland, Eva Sincich. Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Problems and Imaging, 2019, 13 (5) : 1023-1044. doi: 10.3934/ipi.2019046


Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145


Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335


Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547


Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017


Paula Federico, Dobromir T. Dimitrov, Gary F. McCracken. Bat population dynamics: multilevel model based on individuals' energetics. Mathematical Biosciences & Engineering, 2008, 5 (4) : 743-756. doi: 10.3934/mbe.2008.5.743


Huimin Lao, Hao Chen. New constant dimension subspace codes from multilevel linkage construction. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022039


Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems and Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035

2020 Impact Factor: 1.916


  • PDF downloads (116)
  • HTML views (0)
  • Cited by (6)

[Back to Top]