-
Previous Article
One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries
- CPAA Home
- This Issue
-
Next Article
Global attractors for a three-dimensional conserved phase-field system with memory
Multiple solutions for a class of Ambrosetti-Prodi type problems for systems involving critical Sobolev exponents
1. | Departamento de Matemática - ICE, Universidade Federal de Juiz de Fora, CEP: 36036-330, Juiz de Fora, Minas Gerais, Brazil |
$ - \Delta U = AU + (u^p_+, v^p_+)+ F$ in $\Omega$
$ U = 0 $ on $ \partial\Omega,$
where $\Omega\subset \mathbb R^{N}$ is a bounded smooth domain;
$U=(u,v), p=2^\star -1$, with $2^\star=\frac{2N}{N-2}, N \geq 3$;
${w_+}=$ max{ $w,0$} and $F \in L^s(\Omega)\times L^s(\Omega)$
for some $s>N$.
Using variational methods, we prove the existence of at least two solutions. The first is obtained explicitly by a direct
calculation and the second via the Mountain Pass Theorem for the
case $0< \mu_1 \leq \mu_2< \lambda_1$ or Linking Theorem if
$\lambda_k < \mu_1 \leq \mu_2 < \lambda_{k+1}$, where $\mu_1,
\mu_2$ are eigenvalues of symmetric matrix $A$ and $\lambda_j$
are eigenvalues of $(-\Delta, H_0^1(\Omega))$.
[1] |
Imene Bendahou, Zied Khemiri, Fethi Mahmoudi. On spikes concentrating on lines for a Neumann superlinear Ambrosetti-Prodi type problem. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2367-2391. doi: 10.3934/dcds.2020118 |
[2] |
Elisa Sovrano. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 345-355. doi: 10.3934/dcdss.2018019 |
[3] |
Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439 |
[4] |
Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure and Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383 |
[5] |
Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357 |
[6] |
Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943 |
[7] |
Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085 |
[8] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[9] |
Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211 |
[10] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022 |
[11] |
Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4487-4518. doi: 10.3934/dcds.2019184 |
[12] |
Filippo Gazzola. Critical exponents which relate embedding inequalities with quasilinear elliptic problems. Conference Publications, 2003, 2003 (Special) : 327-335. doi: 10.3934/proc.2003.2003.327 |
[13] |
Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461 |
[14] |
Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527 |
[15] |
Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure and Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191 |
[16] |
Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731 |
[17] |
Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 |
[18] |
Zhihua Huang, Xiaochun Liu. Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone sobolev exponents. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3201-3216. doi: 10.3934/cpaa.2019144 |
[19] |
Dongsheng Kang, Fen Yang. Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4247-4263. doi: 10.3934/dcds.2012.32.4247 |
[20] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 1927-1954. doi: 10.3934/dcdsb.2021115 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]