\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Estimates for the life-span of the solutions for some semilinear wave equations

Abstract Related Papers Cited by
  • In this paper we prove main result on blow-up rates, blow-up constants and some estimates for life-spans of the solutions for some initial-boundary value problems for semi-linear wave equations. Under some conditions the life-span $T\star$ can be estimated by

    $\beta (k,\alpha)$: $=$ min{ $2^{3/2+1/2\alpha}\cdot\delta( k,\alpha )a(0) a'(0)^{-1}:k\in (0,1)$},

    where $a(0)=\int_\Omegau_{0}(x)^{2}dx,$ $a'(0)=2\int_\Omega u_{0}( x) u_1(x) dx$ and $\delta(k,\alpha )$ is given by

    $\delta(k,\alpha)$ :$=\frac{1}{k}(\frac{k^2}{1-k^2})^{\frac{\alpha }{1+2\alpha}}$ $(1-(1+(\frac{1}{ k^2}-1)^{\frac{\alpha}{1+2\alpha}})^{\frac{-1}{2\alpha} }).

    Mathematics Subject Classification: 35R30, 35L80, 35L70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return