
Previous Article
Potential well method for initial boundary value problem of the generalized double dispersion equations
 CPAA Home
 This Issue

Next Article
Bifurcation and stability of twodimensional doublediffusive convection
On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes
1.  Research Institute of Mathematics, Voronezh State University, Ul. Universitetskaja pl. 1, 394006, Voronezh, Russian Federation 
2.  Dipartimento di Ingegneria dell' Informazione, Università di Siena, Via Roma 56, 53100, Siena, Italy 
[1] 
Salomón RebolloPerdomo, Claudio Vidal. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 41894202. doi: 10.3934/dcds.2018182 
[2] 
Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 30853108. doi: 10.3934/dcds.2013.33.3085 
[3] 
Jianhe Shen, Shuhui Chen, Kechang Lin. Study on the stability and bifurcations of limit cycles in higherdimensional nonlinear autonomous systems. Discrete and Continuous Dynamical Systems  B, 2011, 15 (1) : 231254. doi: 10.3934/dcdsb.2011.15.231 
[4] 
Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 18351856. doi: 10.3934/dcds.2013.33.1835 
[5] 
JoséLuis Bravo, Manuel Fernández. Limit cycles of nonautonomous scalar ODEs with two summands. Communications on Pure and Applied Analysis, 2013, 12 (2) : 10911102. doi: 10.3934/cpaa.2013.12.1091 
[6] 
Jaume Llibre, Claudia Valls. Algebraic limit cycles for quadratic polynomial differential systems. Discrete and Continuous Dynamical Systems  B, 2018, 23 (6) : 24752485. doi: 10.3934/dcdsb.2018070 
[7] 
Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 40714093. doi: 10.3934/dcds.2013.33.4071 
[8] 
Maoan Han. On some properties and limit cycles of Lienard systems. Conference Publications, 2001, 2001 (Special) : 426434. doi: 10.3934/proc.2001.2001.426 
[9] 
Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503514. doi: 10.3934/dcds.2005.13.503 
[10] 
Alexander M. Krasnoselskii. Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities. Discrete and Continuous Dynamical Systems  S, 2013, 6 (4) : 9991016. doi: 10.3934/dcdss.2013.6.999 
[11] 
Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolicparabolic systems in half space. Kinetic and Related Models, 2018, 11 (4) : 757793. doi: 10.3934/krm.2018031 
[12] 
Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319338. doi: 10.3934/mbe.2007.4.319 
[13] 
Amelia Álvarez, JoséLuis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure and Applied Analysis, 2009, 8 (5) : 14931501. doi: 10.3934/cpaa.2009.8.1493 
[14] 
Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 65416564. doi: 10.3934/dcds.2019284 
[15] 
Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous secondorder gradientlike systems. Communications on Pure and Applied Analysis, 2012, 11 (6) : 23932416. doi: 10.3934/cpaa.2012.11.2393 
[16] 
Shahad Alazzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete and Continuous Dynamical Systems  B, 2017, 22 (2) : 227245. doi: 10.3934/dcdsb.2017012 
[17] 
Fabio Scalco Dias, Luis Fernando Mello. The centerfocus problem and small amplitude limit cycles in rigid systems. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 16271637. doi: 10.3934/dcds.2012.32.1627 
[18] 
Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems  B, 2019, 24 (2) : 881905. doi: 10.3934/dcdsb.2018211 
[19] 
Jaume Llibre, Lucyjane de A. S. Menezes. On the limit cycles of a class of discontinuous piecewise linear differential systems. Discrete and Continuous Dynamical Systems  B, 2020, 25 (5) : 18351858. doi: 10.3934/dcdsb.2020005 
[20] 
Victoriano Carmona, Soledad FernándezGarcía, Antonio E. Teruel. Saddlenode of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 52755299. doi: 10.3934/dcds.2019215 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]