\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes

Abstract Related Papers Cited by
  • We consider an autonomous system in $\mathbb R^n$ having a limit cycle $ x_0$ of period $T>0$ which is nondegenerate in a suitable sense, (see Definition 2.1). We then consider the perturbed system obtained by adding to the autonomous system a $T$-periodic, not necessarily differentiable, term whose amplitude tends to $0$ as a small parameter $\varepsilon>0$ tends to $0.$ Assuming the existence of a $T$-periodic solution $x_\varepsilon$ of the perturbed system and its convergence to $ x_0$ as $\varepsilon\to 0$, the paper establishes the existence of $\Delta_\varepsilon\to 0$ as $\varepsilon\to 0$ such that $||x_\varepsilon(t+\Delta_\varepsilon)-x_0(t)||\le\varepsilon M$ for some $M>0$ and any $\varepsilon>0$ sufficiently small. This paper completes the work initiated by the authors in [4] and [11]. Indeed, in [4] the existence of a family of $T$-periodic solutions $x_\varepsilon$ of the perturbed system considered here was proved. While in [11] for perturbed systems in $\mathbb R^2$ the rate of convergence was investigated by means of the method considered in this paper.
    Mathematics Subject Classification: 34E10, 37G15; Secondary: 34C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return