# American Institute of Mathematical Sciences

July  2008, 7(4): 745-763. doi: 10.3934/cpaa.2008.7.745

## Representation formulas for some 1-dimensional linearized eigenvalue problems

 1 Department of Applied Mathematics, Waseda University, Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan 2 Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-2194

Received  February 2007 Revised  December 2007 Published  April 2008

We study nontrivial stationary solutions to a nonlinear boundary value problem with parameter $\varepsilon>0$ and the corresponding linearized eigenvalue problem. By using a particular solution of a linear ordinary differential equation of the third order, we give expressions of all eigenvalues and eigenfunctions to the linearized problems. They are completely determined by a characteristic function which consists of complete elliptic integrals. We also show asymptotic formulas of eigenvalues with respect to sufficiently small $\varepsilon$. These results give important information for profiles of corresponding eigenfunctions.
Citation: Tohru Wakasa, Shoji Yotsutani. Representation formulas for some 1-dimensional linearized eigenvalue problems. Communications on Pure and Applied Analysis, 2008, 7 (4) : 745-763. doi: 10.3934/cpaa.2008.7.745
 [1] Tohru Wakasa, Shoji Yotsutani. Asymptotic profiles of eigenfunctions for some 1-dimensional linearized eigenvalue problems. Communications on Pure and Applied Analysis, 2010, 9 (2) : 539-561. doi: 10.3934/cpaa.2010.9.539 [2] Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075 [3] Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845 [4] Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial and Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171 [5] Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure and Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 [6] Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925 [7] Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure and Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701 [8] Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 [9] Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016 [10] David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems and Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004 [11] Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008 [12] Jean-Michel Rakotoson. Generalized eigenvalue problem for totally discontinuous operators. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 343-373. doi: 10.3934/dcds.2010.28.343 [13] Natalia P. Bondarenko, Vjacheslav A. Yurko. A new approach to the inverse discrete transmission eigenvalue problem. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021073 [14] Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843 [15] Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068 [16] Lujuan Yu. The asymptotic behaviour of the $p(x)$-Laplacian Steklov eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025 [17] Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025 [18] VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $p(x)$-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 [19] Teodora-Liliana Dinu. Entire solutions of the nonlinear eigenvalue logistic problem with sign-changing potential and absorption. Communications on Pure and Applied Analysis, 2003, 2 (3) : 311-321. doi: 10.3934/cpaa.2003.2.311 [20] Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1497-1519. doi: 10.3934/cpaa.2021030

2020 Impact Factor: 1.916