    July  2008, 7(4): 765-786. doi: 10.3934/cpaa.2008.7.765

## Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity

 1 Department of Mathematics, Henan Normal University, Xinxiang, 453002, China 2 Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received  April 2007 Revised  January 2008 Published  April 2008

We consider the following problem

$-\Delta u=\frac{\lambda}{(1-u)^2}$ in $\Omega$, $u=0$ on $\partial \Omega$, $0 < u < 1$ in $\Omega$

where $\Omega$ is a rather symmetric domain in $\mathbb R^2$. We prove that there exists a $\lambda_\star>0$ such that for $\lambda \in (0, \lambda_\star)$ the minimal solution is unique. Then we analyze the asymptotic behavior of touch-down solutions, i.e., solutions with max$_\Omega u_i (0) \to 1$. We show that after a rescaling, the solution will be asymptotically symmetric. As a consequence, we show that the branch of positive solutions must undergo infinitely many bifurcations as the maximums of the solutions on the branch go to 1 (possibly only changes of direction). This gives a positive answer to some open problems in . Our result is new even in the radially symmetric case. Central to our analysis is the monotonicity formula, one-dimensional Sobloev inequality, and classification of solutions to a supercritical problem

$\Delta U=\frac{1}{U^2}\quad$ in $\mathbb R^2, U(0)=1, U(z) \geq 1.$

Citation: Zongming Guo, Juncheng Wei. Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (4) : 765-786. doi: 10.3934/cpaa.2008.7.765
  Andrzej Szulkin, Shoyeb Waliullah. Infinitely many solutions for some singular elliptic problems. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 321-333. doi: 10.3934/dcds.2013.33.321  Joseph Iaia. Existence of infinitely many solutions for semilinear problems on exterior domains. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4269-4284. doi: 10.3934/cpaa.2020193  Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003  Yimei Li, Jiguang Bao. Semilinear elliptic system with boundary singularity. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2189-2212. doi: 10.3934/dcds.2020111  Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239  Jungsoo Kang. Survival of infinitely many critical points for the Rabinowitz action functional. Journal of Modern Dynamics, 2010, 4 (4) : 733-739. doi: 10.3934/jmd.2010.4.733  Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039  Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461  Ziheng Zhang, Rong Yuan. Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 623-634. doi: 10.3934/cpaa.2014.13.623  Dušan D. Repovš. Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 401-411. doi: 10.3934/dcdss.2019026  Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886  Florin Catrina, Zhi-Qiang Wang. Asymptotic uniqueness and exact symmetry of k-bump solutions for a class of degenerate elliptic problems. Conference Publications, 2001, 2001 (Special) : 80-87. doi: 10.3934/proc.2001.2001.80  Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080  Sanjay Dharmavaram, Timothy J. Healey. Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1669-1684. doi: 10.3934/dcdss.2019112  Lucio Cadeddu, Giovanni Porru. Symmetry breaking in problems involving semilinear equations. Conference Publications, 2011, 2011 (Special) : 219-228. doi: 10.3934/proc.2011.2011.219  Chunhua Wang, Jing Yang. Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1603-1628. doi: 10.3934/dcds.2016.36.1603  Shaodong Wang. Infinitely many blowing-up solutions for Yamabe-type problems on manifolds with boundary. Communications on Pure & Applied Analysis, 2018, 17 (1) : 209-230. doi: 10.3934/cpaa.2018013  Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41  Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327  V. Lakshmikantham, S. Leela. Generalized quasilinearization and semilinear degenerate elliptic problems. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 801-808. doi: 10.3934/dcds.2001.7.801

2020 Impact Factor: 1.916