Advanced Search
Article Contents
Article Contents

Soliton solutions for quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$

Abstract Related Papers Cited by
  • We study the existence of positive solutions to the quasilinear elliptic problem

    $-\epsilon \Delta u+V(x)u-\epsilon k(\Delta(|u|^2))u=g(u), \quad u>0,x \in \mathbb R^N,$

    where g has superlinear growth at infinity without any restriction from above on its growth. Mountain pass in a suitable Orlicz space is employed to establish this result. These equations contain strongly singular nonlinearities which include derivatives of the second order which make the situation more complicated. Such equations arise when one seeks for standing wave solutions for the corresponding quasilinear Schrödinger equations. Schrödinger equations of this type have been studied as models of several physical phenomena. The nonlinearity here corresponds to the superfluid film equation in plasma physics.

    Mathematics Subject Classification: Primary: 35J10, 35J20; Secondary: 35J25.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint