May  2009, 8(3): 1031-1051. doi: 10.3934/cpaa.2009.8.1031

Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities

1. 

Department of Mathematics, Hellenic Naval Academy, Piraeus 18539, Greece

2. 

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780

Received  June 2008 Revised  November 2008 Published  February 2009

We consider a nonlinear Dirichlet problem driven by the $p$--Laplacian differential operator, with a nonlinearity concave near the origin and a nonlinear perturbation of it. We look for multiple positive solutions. We consider two distinct cases. One when the perturbation is $p$--linear and resonant with respect to $\lambda_1>0$ (the principal eigenvalue of $(-\Delta_p,W^{1,p}_0(Z))$) at infinity and the other when the perturbation is $p$--superlinear at infinity. In both cases we obtain two positive smooth solutions. The approach is variational, coupled with the method of upper--lower solutions and with suitable truncation techniques.
Citation: Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1031-1051. doi: 10.3934/cpaa.2009.8.1031
[1]

Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure and Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815

[2]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[3]

Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, 2021, 29 (5) : 3243-3260. doi: 10.3934/era.2021036

[4]

Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559

[5]

Xin-Guang Yang, Marcelo J. D. Nascimento, Maurício L. Pelicer. Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1937-1961. doi: 10.3934/dcds.2020100

[6]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[7]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[8]

Shouchuan Hu, Nikolas S. Papageorgiou. Positive solutions for resonant (p, q)-equations with concave terms. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2639-2656. doi: 10.3934/cpaa.2018125

[9]

Leszek Gasiński, Nikolaos S. Papageorgiou. Three nontrivial solutions for periodic problems with the $p$-Laplacian and a $p$-superlinear nonlinearity. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1421-1437. doi: 10.3934/cpaa.2009.8.1421

[10]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[11]

Qingfang Wang. Multiple positive solutions of fractional elliptic equations involving concave and convex nonlinearities in $R^N$. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1671-1688. doi: 10.3934/cpaa.2016008

[12]

Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107

[13]

João Marcos do Ó, Uberlandio Severo. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Communications on Pure and Applied Analysis, 2009, 8 (2) : 621-644. doi: 10.3934/cpaa.2009.8.621

[14]

M. L. M. Carvalho, Edcarlos D. Silva, C. Goulart. Choquard equations via nonlinear rayleigh quotient for concave-convex nonlinearities. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3445-3479. doi: 10.3934/cpaa.2021113

[15]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations and Control Theory, 2022, 11 (2) : 537-557. doi: 10.3934/eect.2021012

[16]

Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro. Multiple solutions for (p, 2)-equations at resonance. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 347-374. doi: 10.3934/dcdss.2019024

[17]

Salvatore A. Marano, Sunra J. N. Mosconi. Multiple solutions to elliptic inclusions via critical point theory on closed convex sets. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3087-3102. doi: 10.3934/dcds.2015.35.3087

[18]

Necdet Bildik, Sinan Deniz. New approximate solutions to the nonlinear Klein-Gordon equations using perturbation iteration techniques. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 503-518. doi: 10.3934/dcdss.2020028

[19]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[20]

Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]