
Previous Article
Weak solutions of linear degenerate parabolic equations and an application in image processing
 CPAA Home
 This Issue

Next Article
Study of the cyclicity of some degenerate graphics inside quadratic systems
On a class of hypoelliptic operators with unbounded coefficients in $R^N$
1.  Technische Universität Darmstadt, Fachbereich Mathematik, AG Analysis, Schloßgartenstraße 7, D64289, Darmstadt, Germany 
2.  Dipartimento di Matematica, Universitá degli Studi di Parma, Viale G. Usberti 85/A, 43100 Parma 
[1] 
Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 22852299. doi: 10.3934/dcds.2012.32.2285 
[2] 
N. V. Krylov. Some $L_{p}$estimates for elliptic and parabolic operators with measurable coefficients. Discrete and Continuous Dynamical Systems  B, 2012, 17 (6) : 20732090. doi: 10.3934/dcdsb.2012.17.2073 
[3] 
Sibei Yang, Dachun Yang, Wenxian Ma. Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO antisymmetric part in NTA domains. Communications on Pure and Applied Analysis, 2022, 21 (3) : 959998. doi: 10.3934/cpaa.2022006 
[4] 
Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 803817. doi: 10.3934/dcds.2019033 
[5] 
Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete and Continuous Dynamical Systems  B, 2007, 7 (1) : 145170. doi: 10.3934/dcdsb.2007.7.145 
[6] 
Théophile ChaumontFrelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 24452471. doi: 10.3934/cpaa.2020107 
[7] 
Agnese Di Castro, Mayte PérezLlanos, José Miguel Urbano. Limits of anisotropic and degenerate elliptic problems. Communications on Pure and Applied Analysis, 2012, 11 (3) : 12171229. doi: 10.3934/cpaa.2012.11.1217 
[8] 
Hannes Meinlschmidt, Joachim Rehberg. Hölderestimates for nonautonomous parabolic problems with rough data. Evolution Equations and Control Theory, 2016, 5 (1) : 147184. doi: 10.3934/eect.2016.5.147 
[9] 
Giorgio Metafune, Chiara Spina, Cristian Tacelli. On a class of elliptic operators with unbounded diffusion coefficients. Evolution Equations and Control Theory, 2014, 3 (4) : 671680. doi: 10.3934/eect.2014.3.671 
[10] 
Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 60316068. doi: 10.3934/dcds.2015.35.6031 
[11] 
Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 315328. doi: 10.3934/dcds.2000.6.315 
[12] 
Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 51055139. doi: 10.3934/dcds.2021070 
[13] 
Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Höldertype dependence on the solution. Communications on Pure and Applied Analysis, 2013, 12 (4) : 15691585. doi: 10.3934/cpaa.2013.12.1569 
[14] 
Francois van Heerden, ZhiQiang Wang. On a class of anisotropic nonlinear elliptic equations in $\mathbb R^N$. Communications on Pure and Applied Analysis, 2008, 7 (1) : 149162. doi: 10.3934/cpaa.2008.7.149 
[15] 
Giuseppina Barletta, Gabriele Bonanno. Multiplicity results to elliptic problems in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems  S, 2012, 5 (4) : 715727. doi: 10.3934/dcdss.2012.5.715 
[16] 
SunSig Byun, Yumi Cho, Shuang Liang. CalderónZygmund estimates for quasilinear elliptic double obstacle problems with variable exponent and logarithmic growth. Discrete and Continuous Dynamical Systems  B, 2020, 25 (10) : 38433855. doi: 10.3934/dcdsb.2020038 
[17] 
Junjie Zhang, Shenzhou Zheng. Weighted lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients. Communications on Pure and Applied Analysis, 2017, 16 (3) : 899914. doi: 10.3934/cpaa.2017043 
[18] 
Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure and Applied Analysis, 2019, 18 (6) : 31373160. doi: 10.3934/cpaa.2019141 
[19] 
Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601609. doi: 10.3934/dcds.2016.36.601 
[20] 
Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 38013817. doi: 10.3934/dcds.2012.32.3801 
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]