• Previous Article
    Existence and uniqueness results for the gradient vector flow and geodesic active contours mixed model
  • CPAA Home
  • This Issue
  • Next Article
    Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials
July  2009, 8(4): 1313-1332. doi: 10.3934/cpaa.2009.8.1313

Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates


Dipartimento di Matematica, University of Pisa, Italy


Dipartimento di Matematica Applicata, University of Pisa, Italy

Received  June 2008 Revised  November 2008 Published  March 2009

We consider the second order Cauchy problem

$\varepsilon u_\varepsilon''+ u_\varepsilon'+m(|A^{1/2}u_\varepsilon|^2)Au_\varepsilon=0, \quad u_\varepsilon(0)=u_0,\quad u_\varepsilon'(0)=u_1,$

and the first order limit problem

$u'+m(|A^{1/2}u_\varepsilon|^2)Au=0, \quad u(0)=u_0,$

where $\varepsilon>0$, $H$ is a Hilbert space, $A$ is a self-adjoint nonnegative operator on $H$ with dense domain $D(A)$, $(u_0,u_1)\in D(A^{3/2})\times D(A^{1/2})$, and $m:[0,+\infty)\to [0,+\infty)$ is a function of class $C^1$.
We prove global-in-time estimates for the difference $u_\varepsilon(t)-u(t)$ provided that $u_0$ satisfies the nondegeneracy condition $m(|A^{1/2}u_0|^2)>0$, and the function $\sigma m(\sigma^2)$ is nondecreasing in a right neighborhood of its zeroes.
The abstract results apply to parabolic and hyperbolic partial differential equations with non-local nonlinearities of Kirchhoff type.

Citation: Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275


Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 651-660. doi: 10.3934/dcdss.2016019


Morteza Fotouhi, Leila Salimi. Controllability results for a class of one dimensional degenerate/singular parabolic equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1415-1430. doi: 10.3934/cpaa.2013.12.1415


Brahim Allal, Abdelkarim Hajjaj, Jawad Salhi, Amine Sbai. Boundary controllability for a coupled system of degenerate/singular parabolic equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021055


Mounim El Ouardy, Youssef El Hadfi, Aziz Ifzarne. Existence and regularity results for a singular parabolic equations with degenerate coercivity. Discrete & Continuous Dynamical Systems - S, 2022, 15 (1) : 117-141. doi: 10.3934/dcdss.2021012


Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399


Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199


Zhigang Wang, Lei Wang, Yachun Li. Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1163-1182. doi: 10.3934/cpaa.2013.12.1163


Xingwen Hao, Yachun Li, Qin Wang. A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations. Kinetic & Related Models, 2014, 7 (3) : 477-492. doi: 10.3934/krm.2014.7.477


Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661


Siran Li, Jiahong Wu, Kun Zhao. On the degenerate boussinesq equations on surfaces. Journal of Geometric Mechanics, 2020, 12 (1) : 107-140. doi: 10.3934/jgm.2020006


Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621


Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007


Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781


J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136


Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. The cost of controlling weakly degenerate parabolic equations by boundary controls. Mathematical Control & Related Fields, 2017, 7 (2) : 171-211. doi: 10.3934/mcrf.2017006


Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. Persistent regional null contrillability for a class of degenerate parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 607-635. doi: 10.3934/cpaa.2004.3.607


Kristian Bredies. Weak solutions of linear degenerate parabolic equations and an application in image processing. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1203-1229. doi: 10.3934/cpaa.2009.8.1203


Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455


El Mustapha Ait Ben Hassi, Mohamed Fadili, Lahcen Maniar. Controllability of a system of degenerate parabolic equations with non-diagonalizable diffusion matrix. Mathematical Control & Related Fields, 2020, 10 (3) : 623-642. doi: 10.3934/mcrf.2020013

2020 Impact Factor: 1.916


  • PDF downloads (57)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]