January  2009, 8(1): 179-193. doi: 10.3934/cpaa.2009.8.179

On the asymptotic behavior of elliptic, anisotropic singular perturbations problems

1. 

University of Zürich, Institute of Mathematics, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

2. 

University of Zürich, Institute of Mathematics, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Received  June 2008 Revised  August 2008 Published  October 2008

In this paper, we consider anitropic singular perturbations of some elliptic boundary value problems. We study the asymptotic behavior as $\varepsilon \rightarrow 0$ for the solution. Strong convergence in some Sobolev spaces is proved and the rate of convergence in cylindrical domains is given.
Citation: Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179
[1]

Ogabi Chokri. On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1157-1178. doi: 10.3934/cpaa.2016.15.1157

[2]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[3]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure and Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[4]

Agnese Di Castro, Mayte Pérez-Llanos, José Miguel Urbano. Limits of anisotropic and degenerate elliptic problems. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1217-1229. doi: 10.3934/cpaa.2012.11.1217

[5]

Zongming Guo, Juncheng Wei. Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity. Communications on Pure and Applied Analysis, 2008, 7 (4) : 765-786. doi: 10.3934/cpaa.2008.7.765

[6]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Youpei Zhang. Anisotropic singular double phase Dirichlet problems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4465-4502. doi: 10.3934/dcdss.2021111

[7]

Senoussi Guesmia, Abdelmouhcene Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 567-580. doi: 10.3934/dcdss.2012.5.567

[8]

Giuseppe Buttazzo, Faustino Maestre. Optimal shape for elliptic problems with random perturbations. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1115-1128. doi: 10.3934/dcds.2011.31.1115

[9]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[10]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[11]

Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1477-1498. doi: 10.3934/mbe.2017077

[12]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[13]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

[14]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[15]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[16]

Prashanta Garain, Tuhina Mukherjee. Quasilinear nonlocal elliptic problems with variable singular exponent. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5059-5075. doi: 10.3934/cpaa.2020226

[17]

Andrzej Szulkin, Shoyeb Waliullah. Infinitely many solutions for some singular elliptic problems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 321-333. doi: 10.3934/dcds.2013.33.321

[18]

Marino Badiale, Michela Guida, Sergio Rolando. Radial quasilinear elliptic problems with singular or vanishing potentials. Communications on Pure and Applied Analysis, 2022, 21 (1) : 23-46. doi: 10.3934/cpaa.2021165

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Mostafa Adimy, Laurent Pujo-Menjouet. Asymptotic behavior of a singular transport equation modelling cell division. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 439-456. doi: 10.3934/dcdsb.2003.3.439

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]