
Previous Article
Asymptotic analysis of a sizestructured cannibalism model with infinite dimensional environmental feedback
 CPAA Home
 This Issue

Next Article
Periodic solutions of a class of Newtonian equations
Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering
1.  Department of Mathematics, Bogaziçi University, Bebek 34342, Istanbul, Turkey, Turkey 
[1] 
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021031 
[2] 
Brahim Alouini. Finite dimensional global attractor for a class of twocoupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 
[3] 
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 39733984. doi: 10.3934/dcds.2021024 
[4] 
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratictype Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 38173836. doi: 10.3934/dcds.2021018 
[5] 
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021021 
[6] 
Pavel I. Naumkin, Isahi SánchezSuárez. Asymptotics for the higherorder derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021028 
[7] 
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 38373867. doi: 10.3934/dcds.2021019 
[8] 
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear SchrödingerMaxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 12671279. doi: 10.3934/cpaa.2011.10.1267 
[9] 
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems  S, 2021, 14 (5) : 16931716. doi: 10.3934/dcdss.2020450 
[10] 
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 13091333. doi: 10.3934/cpaa.2016.15.1309 
[11] 
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical SobolevHardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 10371054. doi: 10.3934/cpaa.2011.10.1037 
[12] 
José Luis López. A quantum approach to KellerSegel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 26012617. doi: 10.3934/dcds.2020376 
[13] 
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021100 
[14] 
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for timespace fractional Kirchhofftype diffusion equations. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021091 
[15] 
Yingte Sun. Floquet solutions for the Schrödinger equation with fastoscillating quasiperiodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 
[16] 
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437446. doi: 10.3934/proc.2013.2013.437 
[17] 
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 13871406. doi: 10.3934/cpaa.2018068 
[18] 
Simão Correia, Mário Figueira. A generalized complex GinzburgLandau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021056 
[19] 
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933954. doi: 10.3934/cpaa.2020298 
[20] 
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasiperiodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems  B, 2021, 26 (6) : 29772996. doi: 10.3934/dcdsb.2020216 
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]