# American Institute of Mathematical Sciences

January  2009, 8(1): 237-254. doi: 10.3934/cpaa.2009.8.237

## Pseudo-Conform Polynomial Lagrange Finite Elements on Quadrilaterals and Hexahedra

 1 Laboratoire de Mathématiques Appliquées, UMR 5142, Université de Pau et des Pays de lAdour, BP 1155, 64013 Pau Cedex, France, France, France

Received  March 2008 Revised  August 2008 Published  October 2008

The aim of this paper is to develop a new class of finite elements on quadrilaterals and hexahedra. The degrees of freedom are the values at the vertices and the approximation is polynomial on each element $K$. In general, with this kind of finite elements, the resolution of second order elliptic problems leads to non-conform approximations.Degrees of freedom are the same than those of isoparametric finite elements. The convergence of the method is analyzed and the theory is confirmed by some numerical results. Note that in the particular case when the finite elements are parallelotopes, the method is conform and coincides with the classical finite elements on structured meshes.
Citation: Eric Dubach, Robert Luce, Jean-Marie Thomas. Pseudo-Conform Polynomial Lagrange Finite Elements on Quadrilaterals and Hexahedra. Communications on Pure and Applied Analysis, 2009, 8 (1) : 237-254. doi: 10.3934/cpaa.2009.8.237
 [1] Zhong-Ci Shi, Xuejun Xu, Zhimin Zhang. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 163-182. doi: 10.3934/dcdsb.2008.9.163 [2] Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153 [3] Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure and Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297 [4] Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269 [5] Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29 (5) : 3171-3191. doi: 10.3934/era.2021032 [6] Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2849-2871. doi: 10.3934/dcdsb.2021163 [7] Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems and Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795 [8] Mingxia Li, Dongying Hua, Hairong Lian. On $P_1$ nonconforming finite element aproximation for the Signorini problem. Electronic Research Archive, 2021, 29 (2) : 2029-2045. doi: 10.3934/era.2020103 [9] Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model. Mathematical Biosciences & Engineering, 2013, 10 (3) : 637-647. doi: 10.3934/mbe.2013.10.637 [10] P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 [11] Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control and Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014 [12] Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339 [13] Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 [14] Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 [15] Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 [16] Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387 [17] So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343 [18] Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052 [19] Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 [20] Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

2020 Impact Factor: 1.916