# American Institute of Mathematical Sciences

January  2009, 8(1): 255-274. doi: 10.3934/cpaa.2009.8.255

## Analysis of a bone remodeling model

 1 Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, Facultade de Matemáticas, Campus Sur s/n, 15782 Santiago de Compostela, Spain, Spain, Spain

Received  April 2008 Revised  August 2008 Published  October 2008

In this work we study, from the numerical point of view, a bone remodeling model. The variational formulation of this problem is written as an elliptic variational equation for the displacement field, coupled with a first-order ordinary differential equation, with respect to the time, to describe the physiological process of bone remodeling. Fully discrete approximations are introduced, based on the finite element method to approximate the spatial variable, and on an Euler scheme to discretize the time derivatives. Error estimates are obtained on the approximate solutions, from which the linear convergence of the algorithm is derived under suitable regularity conditions. Finally, some numerical results, involving examples in one, two and three dimensions, are presented to show the accuracy and the performance of the algorithm.
Citation: J. R. Fernández, R. Martínez, J. M. Viaño. Analysis of a bone remodeling model. Communications on Pure and Applied Analysis, 2009, 8 (1) : 255-274. doi: 10.3934/cpaa.2009.8.255
 [1] Jason M. Graham, Bruce P. Ayati, Prem S. Ramakrishnan, James A. Martin. Towards a new spatial representation of bone remodeling. Mathematical Biosciences & Engineering, 2012, 9 (2) : 281-295. doi: 10.3934/mbe.2012.9.281 [2] Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663 [3] Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473 [4] Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75 [5] Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic and Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463 [6] Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319 [7] Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842 [8] Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3459-3478. doi: 10.3934/dcdss.2021018 [9] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57 [10] Yanzhao Cao, Song Chen, A. J. Meir. Analysis and numerical approximations of equations of nonlinear poroelasticity. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1253-1273. doi: 10.3934/dcdsb.2013.18.1253 [11] Patrick Henning, Mario Ohlberger. Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 119-150. doi: 10.3934/dcdss.2015.8.119 [12] Wolf-Jürgen Beyn, Sergey Piskarev. Shadowing for discrete approximations of abstract parabolic equations. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 19-42. doi: 10.3934/dcdsb.2008.10.19 [13] Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055 [14] Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889 [15] Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 [16] Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486 [17] Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75 [18] Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic and Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253 [19] Martin Burger, Peter Alexander Markowich, Jan-Frederik Pietschmann. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinetic and Related Models, 2011, 4 (4) : 1025-1047. doi: 10.3934/krm.2011.4.1025 [20] Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulations of a frictional contact problem with damage and memory. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021037

2020 Impact Factor: 1.916