# American Institute of Mathematical Sciences

January  2009, 8(1): 311-333. doi: 10.3934/cpaa.2009.8.311

## Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation

 1 Dpto. E.D.A.N., University of Sevilla, Aptdo. 1160, 41080 Sevilla 2 Universite Pierre et Marie Curie-Paris6, UMR 7598 Laboratoire Jacques-Louis Lions, Paris, F-75005, France 3 Laboratoire de Mathématiques de Versailles, Université de Versailles - St. Quentin, 45 Avenue des Etats Unis, 78035 Versailles

Received  April 2008 Revised  August 2008 Published  October 2008

In this paper, we deal with the three-dimensional Boussinesq system. We prove the local exact controllability to the trajectories of this system when the control is supported in a small set.

The main objective of this paper is to present a new method to control systems associated to equations of fluid dynamics. This method consists of controlling the same system with an additional control acting on the divergence condition in a first step and lifting this condition in a second step. In this paper, we have chosen to apply this technique to the Boussinesq system.
Citation: Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure and Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311
 [1] T. Tachim Medjo, Louis Tcheugoue Tebou. Robust control problems in fluid flows. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 437-463. doi: 10.3934/dcds.2005.12.437 [2] Nicolás Carreño. Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain. Mathematical Control and Related Fields, 2012, 2 (4) : 361-382. doi: 10.3934/mcrf.2012.2.361 [3] Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations and Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 [4] Cheng-Zhong Xu, Gauthier Sallet. Multivariable boundary PI control and regulation of a fluid flow system. Mathematical Control and Related Fields, 2014, 4 (4) : 501-520. doi: 10.3934/mcrf.2014.4.501 [5] Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273 [6] Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya. Vertex control of flows in networks. Networks and Heterogeneous Media, 2008, 3 (4) : 709-722. doi: 10.3934/nhm.2008.3.709 [7] Jon Asier Bárcena-Petisco, Kévin Le Balc'h. Local null controllability of the penalized Boussinesq system with a reduced number of controls. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021038 [8] Fritz Colonius, Paulo Régis C. Ruffino. Nonlinear Iwasawa decomposition of control flows. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 339-354. doi: 10.3934/dcds.2007.18.339 [9] Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169 [10] T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201 [11] Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 [12] Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations and Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039 [13] Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014 [14] Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265 [15] Enrique Fernández-Cara, Diego A. Souza. On the control of some coupled systems of the Boussinesq kind with few controls. Mathematical Control and Related Fields, 2012, 2 (2) : 121-140. doi: 10.3934/mcrf.2012.2.121 [16] Tudor Bînzar, Cristian Lăzureanu. A Rikitake type system with one control. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1755-1776. doi: 10.3934/dcdsb.2013.18.1755 [17] Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 [18] Chongyang Liu, Wenjuan Sun, Xiaopeng Yi. Optimal control of a fractional smoking system. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022071 [19] M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208 [20] Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

2020 Impact Factor: 1.916

## Metrics

• HTML views (0)
• Cited by (12)

• on AIMS