January  2009, 8(1): 37-54. doi: 10.3934/cpaa.2009.8.37

Intersections of several disks of the Riemann sphere as $K$-spectral sets

1. 

Laboratoire Paul Painlevé, Bât. M2, UMR CNRS no. 8524, Université de Lille 1, 59655 Villeneuve d'Ascq Cedex, France, France

2. 

Institut de Recherche Mathématique de Rennes, UMR no. 6625, Université de Rennes 1, Campus de Beaulieu, 35042 RENNES Cedex, France

Received  February 2008 Revised  August 2008 Published  October 2008

We prove that if $n$ closed disks $D_1$,$D_2$,...,$D_n$, of the Riemann sphere are spectral sets for a bounded linear operator $A$ on a Hilbert space, then their intersection $D_1\cap D_2\cap...\cap D_n$ is a complete $K$-spectral set for $A$, with $K\leq n+n(n-1)/\sqrt3$. When $n=2$ and the intersection $X_1\cap X_2$ is an annulus, this result gives a positive answer to a question of A.L. Shields (1974).
Citation: Catalin Badea, Bernhard Beckermann, Michel Crouzeix. Intersections of several disks of the Riemann sphere as $K$-spectral sets. Communications on Pure and Applied Analysis, 2009, 8 (1) : 37-54. doi: 10.3934/cpaa.2009.8.37
[1]

Michel Crouzeix. The annulus as a K-spectral set. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2291-2303. doi: 10.3934/cpaa.2012.11.2291

[2]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure and Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[3]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[4]

Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143

[5]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[6]

Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private set-intersection with common set-up. Advances in Mathematics of Communications, 2018, 12 (1) : 17-47. doi: 10.3934/amc.2018002

[7]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[8]

Alexandre I. Danilenko, Mariusz Lemańczyk. Spectral multiplicities for ergodic flows. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4271-4289. doi: 10.3934/dcds.2013.33.4271

[9]

Virginie Bonnaillie-Noël, Corentin Léna. Spectral minimal partitions of a sector. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 27-53. doi: 10.3934/dcdsb.2014.19.27

[10]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[11]

Michael Baake, Daniel Lenz. Spectral notions of aperiodic order. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 161-190. doi: 10.3934/dcdss.2017009

[12]

Natalie Priebe Frank, Neil Mañibo. Spectral theory of spin substitutions. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022105

[13]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[14]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[15]

Rui Wang, Rundong Zhao, Emily Ribando-Gros, Jiahui Chen, Yiying Tong, Guo-Wei Wei. HERMES: Persistent spectral graph software. Foundations of Data Science, 2021, 3 (1) : 67-97. doi: 10.3934/fods.2021006

[16]

Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial and Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975

[17]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[18]

R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242

[19]

Robert S. Strichartz. Average error for spectral asymptotics on surfaces. Communications on Pure and Applied Analysis, 2016, 15 (1) : 9-39. doi: 10.3934/cpaa.2016.15.9

[20]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (8)

[Back to Top]