-
Previous Article
A fractal quantum mechanical model with Coulomb potential
- CPAA Home
- This Issue
-
Next Article
Existence of positive entire solutions for semilinear elliptic systems in the whole space
Centers for polynomial vector fields of arbitrary degree
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia |
2. | Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa |
[1] |
Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387 |
[2] |
Adriana Buică, Jaume Giné, Maite Grau. Essential perturbations of polynomial vector fields with a period annulus. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1073-1095. doi: 10.3934/cpaa.2015.14.1073 |
[3] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047 |
[4] |
Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation values for a family of planar vector fields of degree five. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 669-701. doi: 10.3934/dcds.2015.35.669 |
[5] |
Primitivo B. Acosta-Humánez, J. Tomás Lázaro, Juan J. Morales-Ruiz, Chara Pantazi. On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1767-1800. doi: 10.3934/dcds.2015.35.1767 |
[6] |
Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755 |
[7] |
Tiago de Carvalho, Bruno Freitas. Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4851-4861. doi: 10.3934/dcdsb.2019034 |
[8] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004 |
[9] |
Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809 |
[10] |
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 |
[11] |
Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623 |
[12] |
Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150 |
[13] |
Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121 |
[14] |
BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85 |
[15] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4943-4957. doi: 10.3934/dcds.2021063 |
[16] |
Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387 |
[17] |
Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015 |
[18] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
[19] |
Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407 |
[20] |
Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]