\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system

Abstract Related Papers Cited by
  • The objective of this paper is two-fold: firstly, we develop a local and global (in time) well-posedness theory for a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrödinger-Benjamin-Ono system) for low-regularity initial data in both periodic and continuous cases; secondly, a family of new periodic traveling waves for the Schrödinger-Benjamin-Ono system is given: by fixing a minimal period we obtain, via the implicit function theorem, a smooth branch of periodic solutions bifurcating a Jacobian elliptic function called dnoidal, and, moreover, we prove that all these periodic traveling waves are nonlinearly stable by perturbations with the same wavelength.
    Mathematics Subject Classification: Primary: 35Q55, 35Q51; Secondary: 76B25, 76B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return