-
Previous Article
Precise range of the existence of positive solutions of a nonlinear, indefinite in sign Neumann problem
- CPAA Home
- This Issue
-
Next Article
Generalized solutions for the abstract singular Cauchy problem
Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II
1. | Université de Monastir, Institut supérieur d'informatique de Mahdia, Km 4, Réjiche, 5121 Mahdia, Tunisia |
2. | Université Paris-Sud, Département de mathématique, Bât. 425, 91405 Orsay, France |
[1] |
Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523 |
[2] |
Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121 |
[3] |
Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks and Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179 |
[4] |
Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8 (1) : 115-130. doi: 10.3934/nhm.2013.8.115 |
[5] |
Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905 |
[6] |
Giacomo Canevari, Antonio Segatti. Motion of vortices for the extrinsic Ginzburg-Landau flow for vector fields on surfaces. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2087-2116. doi: 10.3934/dcdss.2022116 |
[7] |
Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461 |
[8] |
Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145 |
[9] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385 |
[10] |
Raffaela Capitanelli, Salvatore Fragapane. Asymptotics for quasilinear obstacle problems in bad domains. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 43-56. doi: 10.3934/dcdss.2019003 |
[11] |
Frank Hettlich. The domain derivative for semilinear elliptic inverse obstacle problems. Inverse Problems and Imaging, 2022, 16 (4) : 691-702. doi: 10.3934/ipi.2021071 |
[12] |
Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787 |
[13] |
Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017 |
[14] |
Andrea Braides, Valeria Chiadò Piat. Non convex homogenization problems for singular structures. Networks and Heterogeneous Media, 2008, 3 (3) : 489-508. doi: 10.3934/nhm.2008.3.489 |
[15] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[16] |
Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487 |
[17] |
Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems and Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749 |
[18] |
Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044 |
[19] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1261-1274. doi: 10.3934/jimo.2021018 |
[20] |
Shengda Zeng, Vicenţiu D. Rădulescu, Patrick Winkert. Double phase obstacle problems with multivalued convection and mixed boundary value conditions. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022109 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]