January  2010, 9(1): 1-21. doi: 10.3934/cpaa.2010.9.1

Time-frequency analysis of fourier integral operators


Department of Mathematics, University of Torino, via Carlo Alberto 10, 10123 Torino, Italy, Italy


Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino

Received  January 2009 Revised  June 2009 Published  October 2009

Time-frequency methods are used to study a class of Fourier Integral Operators (FIOs) whose representation using Gabor frames is proved to be very efficient. Indeed, similarly to the case of shearlets and curvelets frames [10, 35], the matrix representation of a Fourier Integral Operator with respect to a Gabor frame is well-organized. This is used as a powerful tool to study the boundedness of FIOs on modulation spaces. As special cases, we recapture boundedness results on modulation spaces for pseudo-differential operators with symbols in $M^{\infty, 1}$ [33], for some Fourier multipliers [6] and metaplectic operators [14, 31]. Moreover, this paper provides the mathematical tools to numerically solving the Cauchy problem for Schr¨odinger equations using Gabor frames [17]. Finally, similar arguments can be employed to study other classes of FIOs [16].
Citation: Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure and Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

Antonino De Martino, Kamal Diki. On the polyanalytic short-time Fourier transform in the quaternionic setting. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022117


Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467


Qing Hong, Guorong Hu. Molecular decomposition and a class of Fourier multipliers for bi-parameter modulation spaces. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3103-3120. doi: 10.3934/cpaa.2019139


Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7


Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023


Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005


Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579


Jinhui Li, Guangqing Wang. An $ L^{q}\rightarrow L^{r} $ estimate for rough Fourier integral operators and its applications. Discrete and Continuous Dynamical Systems, 2022, 42 (11) : 5387-5397. doi: 10.3934/dcds.2022102


Hyung Ju Hwang, Thomas P. Witelski. Short-time pattern formation in thin film equations. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 867-885. doi: 10.3934/dcds.2009.23.867


Michael Music. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Problems and Imaging, 2014, 8 (4) : 1151-1167. doi: 10.3934/ipi.2014.8.1151


Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339


Matti Viikinkoski, Mikko Kaasalainen. Shape reconstruction from images: Pixel fields and Fourier transform. Inverse Problems and Imaging, 2014, 8 (3) : 885-900. doi: 10.3934/ipi.2014.8.885


Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure and Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007


Alexander Alekseenko, Jeffrey Limbacher. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $ \mathcal{O}(N^2) $ operations using the discrete fourier transform. Kinetic and Related Models, 2019, 12 (4) : 703-726. doi: 10.3934/krm.2019027


Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787


Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249


Jorge J. Betancor, Alejandro J. Castro, Marta De León-Contreras. Variation operators for semigroups associated with Fourier-Bessel expansions. Communications on Pure and Applied Analysis, 2022, 21 (1) : 239-273. doi: 10.3934/cpaa.2021176


Marcel Oliver. The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2002, 1 (2) : 221-235. doi: 10.3934/cpaa.2002.1.221


Jae Gil Choi, David Skoug. Algebraic structure of the $ L_2 $ analytic Fourier–Feynman transform associated with Gaussian paths on Wiener space. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3829-3842. doi: 10.3934/cpaa.2020169


Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

2021 Impact Factor: 1.273


  • PDF downloads (192)
  • HTML views (0)
  • Cited by (26)

Other articles
by authors

[Back to Top]