# American Institute of Mathematical Sciences

July  2010, 9(4): 1011-1023. doi: 10.3934/cpaa.2010.9.1011

## Solutions for singular quasilinear Schrödinger equations with one parameter

 1 Departamento de Matemática–Universidade Federal da Paraíba, 58051-900, João Pessoa–PB, Brazil 2 Department of Mathematics and Statistics, Queen’s University, Kingston, ON, K7L 3N6, Canada

Received  June 2009 Revised  December 2009 Published  April 2010

We establish the existence of positive bound state solutions for the singular quasilinear Schrödinger equation

$i\frac{\partial \psi}{\partial t}=- \Delta \psi+\psi + \bar{\omega} (|\psi |^2)\psi- \lambda \rho(|\psi|^2)\psi-\kappa\Delta \rho(|\psi|^2)\rho'(|\psi|^2)\psi, x \in \Omega,$

where $\bar{\omega} (\tau^2) \tau \rightarrow +\infty$ as $\tau \rightarrow 0$ and, $\lambda>0$ is a parameter and $\Omega$ is a ball in $\mathcal{R}^N$. This problem is studied in connection with the following quasilinear eigenvalue problem

$-\Delta \Psi-\kappa\Delta \rho(|\Psi|^2)\rho'(|\Psi|^2)\Psi =\lambda_1 \rho(|\Psi|^2)\Psi, x \in \Omega,$

Indeed, we establish the existence of solutions for the above Schrödinger equation when $\lambda$ belongs to a certain neighborhood of the first eigenvalue $\lambda_1$ of the above eigenvalue problem. The main feature of this paper is that the nonlinearity $\bar{\omega} ( |\psi |^2)\psi$ is unbounded around the origin and also the presence of the second order nonlinear term. Our analysis shows the importance of the role played by the parameter $\lambda$ combined with the nonlinear nonhomogeneous term $-\Delta \rho(|\psi|^2)\rho'(|\psi|^2)\psi$. The proofs are based on various techniques related to variational methods and implicit function theorem.

Citation: João Marcos do Ó, Abbas Moameni. Solutions for singular quasilinear Schrödinger equations with one parameter. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1011-1023. doi: 10.3934/cpaa.2010.9.1011
 [1] Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007 [2] Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789 [3] Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure and Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281 [4] Yi He, Gongbao Li. Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Mathematical Control and Related Fields, 2016, 6 (4) : 551-593. doi: 10.3934/mcrf.2016016 [5] Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 [6] David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327 [7] Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043 [8] Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337 [9] Nghiem V. Nguyen, Zhi-Qiang Wang. Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1005-1021. doi: 10.3934/dcds.2016.36.1005 [10] Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085 [11] Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic and Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215 [12] Thierry Colin, Pierre Fabrie. Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 671-690. doi: 10.3934/dcds.1998.4.671 [13] Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080 [14] Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073 [15] François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137 [16] Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129 [17] Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831 [18] Ola I. H. Maehlen. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4113-4130. doi: 10.3934/dcds.2020174 [19] Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835 [20] Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1511-1547. doi: 10.3934/dcdsb.2021100

2021 Impact Factor: 1.273