$ \Delta_p u+\mu|x|^{-\alpha}| u|^{a-2}u+\lambda | u|^{q-2}u+h(|x|)f(u) = 0 $ and
$ \Delta_p u+\mu|x|^{-\alpha}| u|^{p^*_\alpha-2}u+\lambda | u|^{q-2}u+h(|x|)f(u)= 0, $
where $1 < p < n$, $\alpha \in [0,p]$, $a \in [p,p^*_\alpha]$, $p_\alpha^*= p(n-\alpha)/(n-p)$, $\lambda, \mu \in R$ and $q \ge 1$, while $h: R^+ \to R^+_0$ and $f: R\to R$ are given continuous functions. The main tool for deriving nonexistence theorems for the equations is a Pohozaev--type identity. We first show that such identity holds true for weak solutions $u$ in $H^{1,p}(R^n)\cap C^1(R^n \setminus \{0\})$ of the first equation and for weak solutions $u$ in $D^{1,p}(R^n)\cap C^1(R^n \setminus \{0\})$ of the second equation. Then, under a suitable growth condition on $f$, we prove that every weak solution $u$ has the required regularity, so that the Pohozaev--type identity can be applied. From this identity we derive some nonexistence results, improving several theorems already appeared in the literature. In particular, we discuss the case when $h$ and $f$ are pure powers.
Citation: |