November  2010, 9(6): 1577-1590. doi: 10.3934/cpaa.2010.9.1577

Quasi-neutral limit of the two-fluid Euler-Poisson system

1. 

Institute of Applied Physics and Computational Mathematics, P.O.Box 8009-28, Beijing 100088, China, China

2. 

College of Mathematics, Capital Normal University, Beijing 100037, China

3. 

College of Applied Science, Beijing University of Technology, Beijing 100124, China

Received  January 2009 Revised  June 2010 Published  August 2010

Quasi-neutral limit of the multidimensional isentropic two-fluid Euler-Poisson system is rigorously justified. For well-prepared initial data, as the Debye length goes to zero, the convergence of the bipolar Euler-Poisson system to the compressible Euler equations is proved in the time interval where a smooth solution of the limit problem exists.
Citation: Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577
[1]

Jianwei Yang, Dongling Li, Xiao Yang. On the quasineutral limit for the compressible Euler-Poisson equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022020

[2]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Electronic Research Archive, 2020, 28 (2) : 879-895. doi: 10.3934/era.2020046

[3]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[4]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[5]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[6]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[7]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[8]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[9]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure and Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[10]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[11]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[12]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[13]

Sasho Popov, Jean-Marie Strelcyn. The Euler-Poisson equations: An elementary approach to integrability conditions. Journal of Geometric Mechanics, 2018, 10 (3) : 293-329. doi: 10.3934/jgm.2018011

[14]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure and Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[15]

Quentin Chauleur. The isothermal limit for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022059

[16]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[17]

Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292

[18]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[19]

Jin Lai, Huanyao Wen, Lei Yao. Vanishing capillarity limit of the non-conservative compressible two-fluid model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1361-1392. doi: 10.3934/dcdsb.2017066

[20]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic and Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (148)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]