-
Previous Article
Structure of the set of bounded solutions for a class of nonautonomous second order differential equations
- CPAA Home
- This Issue
-
Next Article
Quasi-neutral limit of the two-fluid Euler-Poisson system
Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels
1. | Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242, China, China |
[1] |
Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309 |
[2] |
Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations and Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399 |
[3] |
Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043 |
[4] |
Muhammad Bilal Riaz, Naseer Ahmad Asif, Abdon Atangana, Muhammad Imran Asjad. Couette flows of a viscous fluid with slip effects and non-integer order derivative without singular kernel. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 645-664. doi: 10.3934/dcdss.2019041 |
[5] |
T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure and Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217 |
[6] |
Krunal B. Kachhia, Abdon Atangana. Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2357-2371. doi: 10.3934/dcdss.2020172 |
[7] |
Fırat Evirgen, Sümeyra Uçar, Necati Özdemir, Zakia Hammouch. System response of an alcoholism model under the effect of immigration via non-singular kernel derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2199-2212. doi: 10.3934/dcdss.2020145 |
[8] |
Badr Saad T. Alkahtani, Ilknur Koca. A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 429-442. doi: 10.3934/dcdss.2020024 |
[9] |
Lawrence Ein, Wenbo Niu, Jinhyung Park. On blowup of secant varieties of curves. Electronic Research Archive, 2021, 29 (6) : 3649-3654. doi: 10.3934/era.2021055 |
[10] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic and Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[11] |
Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301 |
[12] |
Yuming Paul Zhang. On a class of diffusion-aggregation equations. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 907-932. doi: 10.3934/dcds.2020066 |
[13] |
Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055 |
[14] |
Ali Akgül. A new application of the reproducing kernel method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2041-2053. doi: 10.3934/dcdss.2020261 |
[15] |
Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068 |
[16] |
Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711 |
[17] |
Piotr Biler, Grzegorz Karch, Jacek Zienkiewicz. Morrey spaces norms and criteria for blowup in chemotaxis models. Networks and Heterogeneous Media, 2016, 11 (2) : 239-250. doi: 10.3934/nhm.2016.11.239 |
[18] |
Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 767-779. doi: 10.3934/dcds.2010.26.767 |
[19] |
Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060 |
[20] |
Piotr Biler, Elio E. Espejo, Ignacio Guerra. Blowup in higher dimensional two species chemotactic systems. Communications on Pure and Applied Analysis, 2013, 12 (1) : 89-98. doi: 10.3934/cpaa.2013.12.89 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]