\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain

Abstract Related Papers Cited by
  • In this paper, we consider the problem $(Q_\varepsilon)$ : $\Delta ^2 u= u^9 +\varepsilon f(x)$ in $\Omega$, $u=\Delta u=0$ on $\partial\Omega$, where $\Omega$ is a bounded and smooth domain in $R^5$, $\varepsilon$ is a small positive parameter, and $f$ is a smooth function. Our main purpose is to characterize the solutions with some assumptions on the energy. We prove that these solutions blow up at a critical point of a function depending on $f$ and the regular part of the Green's function. Moreover, we construct families of solutions of $(Q_\varepsilon)$ which satisfy the conclusions of the first part.
    Mathematics Subject Classification: Primary: 35J60, 35J65, 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return