November  2010, 9(6): 1731-1752. doi: 10.3934/cpaa.2010.9.1731

On the shape of the least-energy solutions to some singularly perturbed mixed problems

1. 

Dipartimento di Matematica, UNICAL, Ponte Pietro Bucci 31 B, 87036 Arcavacata di Rende, Cosenza, Italy

Received  December 2009 Revised  March 2010 Published  August 2010

In this paper we want to \emph{characterize} and \emph{visualize} the shape of some solutions to a singularly perturbed problem \eqref{eq:pe} with mixed Dirichlet and Neumann boundary conditions. Such type of problem arises in several situations as reaction-diffusion systems, nonlinear heat conduction and also as limit of reaction-diffusion systems coming from chemotaxis. In particular we are interested in showing the location and the shape of {\it least energy solutions} when the singular perturbation parameter goes to zero, analyzing the geometrical effect of the \emph{curved boundary} of the domain.
Citation: Luigi Montoro. On the shape of the least-energy solutions to some singularly perturbed mixed problems. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1731-1752. doi: 10.3934/cpaa.2010.9.1731
[1]

Andrés Ávila, Louis Jeanjean. A result on singularly perturbed elliptic problems. Communications on Pure & Applied Analysis, 2005, 4 (2) : 341-356. doi: 10.3934/cpaa.2005.4.341

[2]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[3]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[4]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[5]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[6]

Marco Ghimenti, A. M. Micheletti. Non degeneracy for solutions of singularly perturbed nonlinear elliptic problems on symmetric Riemannian manifolds. Communications on Pure & Applied Analysis, 2013, 12 (2) : 679-693. doi: 10.3934/cpaa.2013.12.679

[7]

Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493

[8]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[9]

Ahmed Bonfoh. Sufficient conditions for the continuity of inertial manifolds for singularly perturbed problems. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021049

[10]

Kamil Aida-Zade, Jamila Asadova. Numerical solution to optimal control problems of oscillatory processes. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021166

[11]

Bernhard Ruf, P. N. Srikanth. Hopf fibration and singularly perturbed elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 823-838. doi: 10.3934/dcdss.2014.7.823

[12]

Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237

[13]

Daomin Cao, Norman E. Dancer, Ezzat S. Noussair, Shunsen Yan. On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 221-236. doi: 10.3934/dcds.1996.2.221

[14]

Santiago Cano-Casanova. Coercivity of elliptic mixed boundary value problems in annulus of $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 3819-3839. doi: 10.3934/dcds.2012.32.3819

[15]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[16]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[17]

Maria Fărcăşeanu, Mihai Mihăilescu, Denisa Stancu-Dumitru. Perturbed fractional eigenvalue problems. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6243-6255. doi: 10.3934/dcds.2017270

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Xiaowei Pang, Haiming Song, Xiaoshen Wang, Jiachuan Zhang. Efficient numerical methods for elliptic optimal control problems with random coefficient. Electronic Research Archive, 2020, 28 (2) : 1001-1022. doi: 10.3934/era.2020053

[20]

Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]