March  2010, 9(2): 397-411. doi: 10.3934/cpaa.2010.9.397

Fast rate of dead core for fast diffusion equation with strong absorption

1. 

College of mathematics and physics, Chongqing University, Chongqing, 400044, China

2. 

College of mathematics and physics, Chongqing University, Chongqing, 400044, School of mathematics and statistics, Southwest University, Chongqing, 400715, China

3. 

Department of Mathematics, Sichuan Normal University, Chengdu, 610066, China

Received  January 2009 Revised  July 2009 Published  December 2009

This paper deals with the dead core problem for the fast diffusion equation with strong absorption and positive boundary values. We prove that the dead core rate is faster than the one given by the corresponding ODE, which is contrary to the known results for the related extinction, quenching and blow up problems. Moreover, we find the dead core rate is quite unstable: the ODE rate can be recovered if the absorption term is replaced by $-a(t,x)u^p$ for a suitable bounded, uniformly positive function $a(t,x)$. As an application of the above results, some new and relatively simple examples of fast blow up are provided, and a phenomenon of strong sensitivity to gradient perturbations is exhibited. Furthermore, the blow up rate is found to depend on a constant in the perturbation term, and sharp estimates are also obtained for the profile of dead core and blow up.
Citation: Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure and Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397
[1]

Chin-Chin Wu, Zhengce Zhang. Dead-core rates for the heat equation with a spatially dependent strong absorption. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2203-2210. doi: 10.3934/dcdsb.2013.18.2203

[2]

Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

[3]

Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107

[4]

Shu-Yu Hsu. Super fast vanishing solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5383-5414. doi: 10.3934/dcds.2020232

[5]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[6]

H. T. Liu. Impulsive effects on the existence of solutions for a fast diffusion equation. Conference Publications, 2001, 2001 (Special) : 248-253. doi: 10.3934/proc.2001.2001.248

[7]

Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129

[8]

Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859

[9]

Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 725-735. doi: 10.3934/dcdss.2014.7.725

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Kin Ming Hui, Jinwan Park. Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5473-5508. doi: 10.3934/dcds.2021085

[12]

Felipe Wallison Chaves-Silva, Sergio Guerrero, Jean Pierre Puel. Controllability of fast diffusion coupled parabolic systems. Mathematical Control and Related Fields, 2014, 4 (4) : 465-479. doi: 10.3934/mcrf.2014.4.465

[13]

Yun-Gang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 243-250. doi: 10.3934/dcds.1997.3.243

[14]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[15]

Massimiliano Berti, Philippe Bolle. Fast Arnold diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 795-811. doi: 10.3934/dcds.2002.8.795

[16]

Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1109-1128. doi: 10.3934/dcdsb.2019211

[17]

Zhengce Zhang, Bei Hu. Gradient blowup rate for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 767-779. doi: 10.3934/dcds.2010.26.767

[18]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060

[19]

Mikaela Iacobelli. Asymptotic analysis for a very fast diffusion equation arising from the 1D quantization problem. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4929-4943. doi: 10.3934/dcds.2019201

[20]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 903-920. doi: 10.3934/dcdsb.2021073

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]