-
Previous Article
The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$
- CPAA Home
- This Issue
-
Next Article
Fast rate of dead core for fast diffusion equation with strong absorption
Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system
1. | Universidade Estadual de Maringá - UEM, Avenida Colombo, 5790, CEP 87020-900, Maringá, Brazil |
2. | Instituto de Matemática Pura e Aplicada - IMPA, Estrada Dona Castorina, 110, CEP 22460-320, Rio de Janeiro, RJ, Brazil |
[1] |
Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221 |
[2] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149 |
[3] |
Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239 |
[4] |
Ahmed Y. Abdallah, Taqwa M. Al-Khader, Heba N. Abu-Shaab. Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022006 |
[5] |
Adriana Flores de Almeida, Marcelo Moreira Cavalcanti, Janaina Pedroso Zanchetta. Exponential stability for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Evolution Equations and Control Theory, 2019, 8 (4) : 847-865. doi: 10.3934/eect.2019041 |
[6] |
Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 |
[7] |
Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695 |
[8] |
Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55 |
[9] |
Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843 |
[10] |
Hiroaki Kikuchi. Remarks on the orbital instability of standing waves for the wave-Schrödinger system in higher dimensions. Communications on Pure and Applied Analysis, 2010, 9 (2) : 351-364. doi: 10.3934/cpaa.2010.9.351 |
[11] |
Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359 |
[12] |
Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389 |
[13] |
Salah Missaoui. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $ \mathbb{R}^3 $ nonlinear KGS system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 567-584. doi: 10.3934/cpaa.2021189 |
[14] |
E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156 |
[15] |
Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz. Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4021-4044. doi: 10.3934/dcdsb.2018122 |
[16] |
Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077 |
[17] |
A. F. Almeida, M. M. Cavalcanti, J. P. Zanchetta. Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2039-2061. doi: 10.3934/cpaa.2018097 |
[18] |
Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022065 |
[19] |
Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2187-2209. doi: 10.3934/cpaa.2021063 |
[20] |
Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]