
Previous Article
Spherically symmetric NavierStokes equations with degenerate viscosity coefficients and vacuum
 CPAA Home
 This Issue

Next Article
Stability properties of periodic standing waves for the KleinGordonSchrödinger system
The twodimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$
1.  Department of Mathematics, Shanghai University, Shanghai, 200444, College of Mathematics and System Sciences, Urumqi, 830000, Xinjiang, China 
2.  Department of Mathematics, Shanghai University, Shanghai, 200444, China 
3.  Institute of Mathematics, AMSS, Chinese Academy of Sciences, Beijing, 100190, China 
[1] 
Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2D isothermal Euler equations. Communications on Pure and Applied Analysis, 2019, 18 (6) : 33173336. doi: 10.3934/cpaa.2019149 
[2] 
Tung Chang, GuiQiang Chen, Shuli Yang. On the 2D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 555584. doi: 10.3934/dcds.1995.1.555 
[3] 
Tung Chang, GuiQiang Chen, Shuli Yang. On the 2D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 419430. doi: 10.3934/dcds.2000.6.419 
[4] 
Qin Wang, Kyungwoo Song. The regularity of sonic curves for the twodimensional Riemann problems of the nonlinear wave system of Chaplygin gas. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 16611675. doi: 10.3934/dcds.2016.36.1661 
[5] 
Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2018, 17 (1) : 127142. doi: 10.3934/cpaa.2018008 
[6] 
Geng Lai, Wancheng Sheng, Yuxi Zheng. Simple waves and pressure delta waves for a Chaplygin gas in twodimensions. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 489523. doi: 10.3934/dcds.2011.31.489 
[7] 
Fei Hou, Huicheng Yin. On global axisymmetric solutions to 2D compressible full Euler equations of Chaplygin gases. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 14351492. doi: 10.3934/dcds.2020083 
[8] 
Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure and Applied Analysis, 2017, 16 (1) : 295310. doi: 10.3934/cpaa.2017014 
[9] 
Meixiang Huang, ZhiQiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure and Applied Analysis, 2016, 15 (1) : 127138. doi: 10.3934/cpaa.2016.15.127 
[10] 
Roberto Triggiani. Stability enhancement of a 2D linear NavierStokes channel flow by a 2D, wallnormal boundary controller. Discrete and Continuous Dynamical Systems  B, 2007, 8 (2) : 279314. doi: 10.3934/dcdsb.2007.8.279 
[11] 
Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2014, 13 (6) : 27332748. doi: 10.3934/cpaa.2014.13.2733 
[12] 
Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2016, 15 (6) : 23732400. doi: 10.3934/cpaa.2016041 
[13] 
Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2D quasilinear wave equations. Communications on Pure and Applied Analysis, 2017, 16 (3) : 719744. doi: 10.3934/cpaa.2017035 
[14] 
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of twodimensional piecewise linear maps: Abundance of 2D strange attractors. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 941966. doi: 10.3934/dcds.2018040 
[15] 
Chuandong Li, Fali Ma, Tingwen Huang. 2D analysis based iterative learning control for linear discretetime systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175181. doi: 10.3934/jimo.2011.7.175 
[16] 
Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initialboundary value problem of a 2D KazhikhovSmagulov type model. Discrete and Continuous Dynamical Systems  S, 2014, 7 (5) : 917923. doi: 10.3934/dcdss.2014.7.917 
[17] 
Gianmarco Manzini, Annamaria Mazzia. A virtual element generalization on polygonal meshes of the ScottVogelius finite element method for the 2D Stokes problem. Journal of Computational Dynamics, 2022, 9 (2) : 207238. doi: 10.3934/jcd.2021020 
[18] 
Tian Ma, Shouhong Wang. Global structure of 2D incompressible flows. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 431445. doi: 10.3934/dcds.2001.7.431 
[19] 
Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2D turbulence. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 13271351. doi: 10.3934/dcds.2010.27.1327 
[20] 
Jeanfrançois Coulombel, Paolo Secchi. Uniqueness of 2D compressible vortex sheets. Communications on Pure and Applied Analysis, 2009, 8 (4) : 14391450. doi: 10.3934/cpaa.2009.8.1439 
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]