• Previous Article
    Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions
  • CPAA Home
  • This Issue
  • Next Article
    Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes
May  2010, 9(3): 611-624. doi: 10.3934/cpaa.2010.9.611

Eigenmodes and eigenfrequencies of vibrating elliptic membranes: a Klein oscillation theorem and numerical calculations

1. 

UFMG, Depto. de Matematica, Avenida Antonio Carlos 6627, 30161-970, Belo Horizonte - MG, Brazil

Received  April 2009 Revised  December 2009 Published  January 2010

We give a complete proof of the existence of an infinite set of eigenmodes for a vibrating elliptic membrane in one to one correspondence with the well-known eigenmodes for a circular membrane. More exactly, we show that for each pair $(m,n) \in \{0,1,2, \cdots\}^2$ there exists a unique even eigenmode with $m$ ellipses and $n$ hyperbola branches as nodal curves and, similarly, for each $(m,n) \in \{0,1,2, \cdots\}\times \{1,2, \cdots\}$ there exists a unique odd eigenmode with $m$ ellipses and $n$ hyperbola branches as nodal curves. Our result is based on directly using the separation of variables method for the Helmholtz equation in elliptic coordinates and in proving that certain pairs of curves in the plane of parameters $a$ and $q$ cross each other at a single point. As side effects of our proof, a new and precise method for numerically calculating the eigenfrequencies of these modes is presented and also approximate formulae which explain rather well the qualitative asymptotic behavior of the eigenfrequencies for large eccentricities.
Citation: Armando G. M. Neves. Eigenmodes and eigenfrequencies of vibrating elliptic membranes: a Klein oscillation theorem and numerical calculations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 611-624. doi: 10.3934/cpaa.2010.9.611
[1]

O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077

[2]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[3]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[4]

Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control and Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018

[5]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems and Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[6]

Miklós Horváth. Spectral shift functions in the fixed energy inverse scattering. Inverse Problems and Imaging, 2011, 5 (4) : 843-858. doi: 10.3934/ipi.2011.5.843

[7]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[8]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems and Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[9]

Antoine Henrot, El-Haj Laamri, Didier Schmitt. On some spectral problems arising in dynamic populations. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2429-2443. doi: 10.3934/cpaa.2012.11.2429

[10]

Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282

[11]

Robert F. Bailey, John N. Bray. Decoding the Mathieu group M12. Advances in Mathematics of Communications, 2007, 1 (4) : 477-487. doi: 10.3934/amc.2007.1.477

[12]

Shiping Cao, Anthony Coniglio, Xueyan Niu, Richard H. Rand, Robert S. Strichartz. The mathieu differential equation and generalizations to infinite fractafolds. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1795-1845. doi: 10.3934/cpaa.2020073

[13]

Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43

[14]

Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev. Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3 (3) : 413-436. doi: 10.3934/nhm.2008.3.413

[15]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations and Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[16]

Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042

[17]

ShiChun Lv, Shou-Qiang Du. A new smoothing spectral conjugate gradient method for solving tensor complementarity problems. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021150

[18]

Jingwei Hu, Jie Shen, Yingwei Wang. A Petrov-Galerkin spectral method for the inelastic Boltzmann equation using mapped Chebyshev functions. Kinetic and Related Models, 2020, 13 (4) : 677-702. doi: 10.3934/krm.2020023

[19]

Armando G. M. Neves. Upper and lower bounds on Mathieu characteristic numbers of integer orders. Communications on Pure and Applied Analysis, 2004, 3 (3) : 447-464. doi: 10.3934/cpaa.2004.3.447

[20]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial and Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (284)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]