    May  2010, 9(3): 731-740. doi: 10.3934/cpaa.2010.9.731

## Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions

 1 Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 84173 Bratislava, Slovak Republic 2 Institute of Applied Mathematics and Statistics, Comenius University, Mlynská dolina, 84248 Bratislava

Received  June 2009 Revised  November 2009 Published  January 2010

Consider the elliptic system $-\Delta u=f(x,v)$, $-\Delta v+v=g(x,u)$ in a bounded smooth domain $\Omega\subset\R^N$, complemented by the boundary conditions $u=\partial_\nu v = 0$ on $\partial\Omega$. Here $f,g$ are nonnegative Carathéodory functions satisfying the growth conditions $f\leq C(1+|v|^p)$, $g\leq C(1+|u|^q)$. We find necessary and sufficient conditions on $p,q$ guaranteeing that $u,v\in L^\infty(\Omega)$ for any very weak solution $(u,v)$. In addition, our conditions guarantee the a priori estimate $||u||_\infty+||v||_\infty\leq C$, where $C$ depends only on the norm of $(u,v)$ in $L^1_\delta(\Omega)\times L^1(\Omega)$.

Let us consider the borderline in the $(p,q)$-plane between the region where all very weak solutions are bounded and the region where unbounded solutions exist. It turns out that this borderline coincides with the corresponding borderline for the system with the Neumann boundary conditions $\partial_\nu u=\partial_\nu v = 0$ on $\partial\Omega$ if $p\leq N/(N-2)$, while it coincides with the borderline for the system with the Dirichlet boundary conditions $u=v=0$ on $\partial\Omega$ if $p\geq(N+1)/(N-2)$. If $p\in (N/(N-2),(N+1)/(N-2))$ then the borderline for the Dirichlet-Neumann problem lies strictly between the borderlines for the systems with pure Neumann and pure Dirichlet boundary conditions.

Our proofs are based on some new $L^p-L^q$ estimates in weighted $L^p$-spaces.
Citation: Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731
  Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865  Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240  Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809  Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4461-4476. doi: 10.3934/dcds.2021043  Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357  Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159  Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303  Lucas C. F. Ferreira, Everaldo Medeiros, Marcelo Montenegro. An elliptic system and the critical hyperbola. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1169-1182. doi: 10.3934/cpaa.2015.14.1169  Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037  Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179  Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527  Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795  Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698  Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025  T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875  Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038  Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283  Emeric Bouin, Jean Dolbeault, Christian Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic and Related Models, 2020, 13 (2) : 345-371. doi: 10.3934/krm.2020012  Elder Jesús Villamizar-Roa, Henry Lamos-Díaz, Gilberto Arenas-Díaz. Very weak solutions for the magnetohydrodynamic type equations. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 957-972. doi: 10.3934/dcdsb.2008.10.957  Claudianor Oliveira Alves, Paulo Cesar Carrião, Olímpio Hiroshi Miyagaki. Signed solution for a class of quasilinear elliptic problem with critical growth. Communications on Pure and Applied Analysis, 2002, 1 (4) : 531-545. doi: 10.3934/cpaa.2002.1.531

2020 Impact Factor: 1.916