Citation: |
[1] |
L. Ambrosio, G. Crippa and S. Maniglia, Traces and fine properties of a $BD$ class of vector fields and applications, Ann. Fac. Sci. Toulouse Math., 14 (2005), 527-561. |
[2] |
L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford University Press, Oxford, 2000. |
[3] |
G. Anzellotti, Pairings between measures and functions and compensated compactness, Ann. Mat. Pura Appl., 135 (1983), 293-318.doi: doi:10.1007/BF01781073. |
[4] |
G.-Q. Chen, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III), Acta Math. Sci., 6 (1986), 75-120 (in English); 8 (1988), 243-276 (in Chinese). |
[5] |
G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118.doi: doi:10.1007/s002050050146. |
[6] |
G.-Q. Chen and Ph. LeFloch, Compressible Euler equations with general pressure law, Arch. Ration. Mech. Anal., 153 (2000), 221-259; Existence theory for the isentropic Euler equations, Arch. Ration. Mech. Anal., 166 (2003), 81-98.doi: doi:10.1007/s00205-002-0229-2. |
[7] |
G.-Q. Chen and M. Rascle, Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws, Arch. Ration. Mech. Anal., 153 (2000), 205-220.doi: doi:10.1007/s002050000081. |
[8] |
G.-Q. Chen and M. Torres, Divergence-measure fields, sets of finite perimeter, and conservation laws, Arch. Ration. Mech. Anal., 175 (2005), 245-267.doi: doi:10.1007/s00205-004-0346-1. |
[9] |
G.-Q. Chen, M. Torres and W. Ziemer, Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Comm. Pure Appl. Math., 62 (2009), 242-304.doi: doi:10.1002/cpa.20262. |
[10] |
G.-Q. Chen, M. Torres and W. P. Ziemer, Measure-theoretical analysis and nonlinear conservation laws, Pure Appl. Math. Quarterly, 3 (2007), 841-879. |
[11] |
C. De Lellis, F. Otto and M. Westdickenberg, Structure of entropy solutions for multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 170 (2003), 137-184.doi: doi:10.1007/s00205-003-0270-9. |
[12] |
X. Ding, G.-Q. Chen and P. Luo, Convergence of the Lax-Friedrichs scheme for the isentropic gas dynamics (I)-(II), Acta Math. Sci., 5 (1985), 483-500, 501-540 (in English); 7 (1987), 467-480; 8 (1989), 61-94 (in Chinese). |
[13] |
X. Ding, G.-Q. Chen and P. Luo, Convergence of the fractional step Lax-Friedrichs and Godunov scheme for the isentropic system of gas dynamics, Commun. Math. Phys., 121 (1989), 63-84.doi: doi:10.1007/BF01218624. |
[14] |
R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Ration. Mech. Anal., 82 (1983), 27-70.doi: doi:10.1007/BF00251724. |
[15] |
R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys., 91 (1983), 1-30.doi: doi:10.1007/BF01206047. |
[16] |
L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," CRC Press, Boca Raton, FL, 1992. |
[17] |
H. Federer, "Geometric Measure Theory," Springer-Verlag, New York, 1969. |
[18] |
E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Birkhäuser Verlag, Basel, 1984. |
[19] |
P. L. Lions, B. Perthame and E. Tadmor, Kinetic formulation for the isentropic gas dynamics and p-system, Commun. Math. Phys., 163 (1994), 415-431.doi: doi:10.1007/BF02102014. |
[20] |
P. L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49 (1996), 599-638.doi: doi:10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5. |
[21] |
E. Yu. Panov, Existence of strong traces for generalized solutions of multidimensional scalar conservation laws, J. Hyper. Diff. Eqs., 2 (2005), 885-908.doi: doi:10.1142/S0219891605000658. |
[22] |
N. C. Phuc and M. Torres, Characterizations of the existence and removable singularities of divergence-measure vector fields, Indiana Univ. Math. J., 57 (2008), 1573-1597.doi: doi:10.1512/iumj.2008.57.3312. |
[23] |
W. Rudin, "Principi di Analisi Matematica," McGraw-Hill, 1991. |
[24] |
M. Silhavy, Divergence measure fields and Cauchy's stress theorem, Rend. Sem. Mat. Padova, 113 (2005), 15-45. |
[25] |
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193.doi: doi:10.1007/s002050100157. |
[26] |
A. Vasseur and Y. Kwon, Strong traces for solutions to scalar conservation laws with general flux, Arch. Ration. Mech. Anal., 185 (2007), 495-513.doi: doi:10.1007/s00205-007-0055-7. |
[27] |
W. Ziemer, "Weakly Differentiable Functions," Springer-Verlag, New York, 1989. |