July  2011, 10(4): 1079-1096. doi: 10.3934/cpaa.2011.10.1079

Nonlinear hyperbolic-elliptic systems in the bounded domain

1. 

CMAF/Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal

Received  August 2010 Revised  October 2010 Published  April 2011

In the article we study a hyperbolic-elliptic system of PDE. The system can describe two different physical phenomena: 1st one is the motion of magnetic vortices in the II-type superconductor and 2nd one is the collective motion of cells. Motivated by real physics, we consider this system with boundary conditions, describing the flux of vortices (and cells, respectively) through the boundary of the domain. We prove the global solvability of this problem. To show the solvability result we use a "viscous" parabolic-elliptic system. Since the viscous solutions do not have a compactness property, we justify the limit transition on a vanishing viscosity, using a kinetic formulation of our problem. As the final result of all considerations we have solved a very important question related with a so-called "boundary layer problem", showing the strong convergence of the viscous solutions to the solution of our hyperbolic-elliptic system.
Citation: N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079
References:
[1]

S. N. Antontsev and N. V. Chemetov, Flux of superconducting vortices through a domain, SIAM J. Math. Anal., 39 (2007), 263-280. doi: 10.1137/060655146.

[2]

S. N. Antontsev and N. V. Chemetov, Superconducting Vortices: Chapman Full Model, in "New Directions in Mathematical Fluid Mechanics: The Alexander V. Kazhikhov memorial volume," doi: 10.1007/978-3-0346-0152-8_3.

[3]

S. J. Chapman, A hierarchy of models for type-II superconductors, SIAM Review, 42 (2000), 555-598. doi: 10.1137/S0036144599371913.

[4]

S. J. Chapman, A Mean-Field Model of Superconducting Vortices in Three Dimensions, SIAM J. Appl. Math., 55 (1995), 1259-1274. doi: 10.1137/S0036139994263665.

[5]

G.-Q. Chen and H. Frid, On the theory of divergence-measure fields and its applications, Bol. Soc. Bras. Mat., 32 (2001), 401-433. doi: 10.1007/BF01233674.

[6]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, 1999.

[7]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983.

[8]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I) Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165; II) Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69.

[9]

C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio, Bourbaki Seminar, Preprint (2007), 1-26.

[10]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Linear and Quasilinear Equations of Parabolic Type," American Mathematical Society, Providence RJ, 1968.

[11]

O. A. Ladyzhenskaya and N. N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Academic Press, New York and London, 1968.

[12]

J. L. Lions and E. Magenes, "Problèmes aux limites non Homogénes et Applications," Dunod, Paris, 1968.

[13]

J. Malek, J. Necas, M. Rokyta and M. Ruzicka, "Weak and Measure-valued Solutions to Evolutionary PDEs," Chapman & Hall, London, 1996.

[14]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335. doi: 10.1090/S0002-9947-08-04656-4.

[15]

P. I. Plotnikov, "Ultraparabolic Muskat Equations," Preprint No. 6, University Beira Interior, Covilhã (Portugal), 2000.

[16]

P. Plotnikov and S. Sazhenkov, Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation, J. Math. Anal. Appl., 304 (2005), 703-724. doi: 10.1016/j.jmaa.2004.09.050.

show all references

References:
[1]

S. N. Antontsev and N. V. Chemetov, Flux of superconducting vortices through a domain, SIAM J. Math. Anal., 39 (2007), 263-280. doi: 10.1137/060655146.

[2]

S. N. Antontsev and N. V. Chemetov, Superconducting Vortices: Chapman Full Model, in "New Directions in Mathematical Fluid Mechanics: The Alexander V. Kazhikhov memorial volume," doi: 10.1007/978-3-0346-0152-8_3.

[3]

S. J. Chapman, A hierarchy of models for type-II superconductors, SIAM Review, 42 (2000), 555-598. doi: 10.1137/S0036144599371913.

[4]

S. J. Chapman, A Mean-Field Model of Superconducting Vortices in Three Dimensions, SIAM J. Appl. Math., 55 (1995), 1259-1274. doi: 10.1137/S0036139994263665.

[5]

G.-Q. Chen and H. Frid, On the theory of divergence-measure fields and its applications, Bol. Soc. Bras. Mat., 32 (2001), 401-433. doi: 10.1007/BF01233674.

[6]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, 1999.

[7]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983.

[8]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I) Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165; II) Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69.

[9]

C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio, Bourbaki Seminar, Preprint (2007), 1-26.

[10]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Linear and Quasilinear Equations of Parabolic Type," American Mathematical Society, Providence RJ, 1968.

[11]

O. A. Ladyzhenskaya and N. N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Academic Press, New York and London, 1968.

[12]

J. L. Lions and E. Magenes, "Problèmes aux limites non Homogénes et Applications," Dunod, Paris, 1968.

[13]

J. Malek, J. Necas, M. Rokyta and M. Ruzicka, "Weak and Measure-valued Solutions to Evolutionary PDEs," Chapman & Hall, London, 1996.

[14]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335. doi: 10.1090/S0002-9947-08-04656-4.

[15]

P. I. Plotnikov, "Ultraparabolic Muskat Equations," Preprint No. 6, University Beira Interior, Covilhã (Portugal), 2000.

[16]

P. Plotnikov and S. Sazhenkov, Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation, J. Math. Anal. Appl., 304 (2005), 703-724. doi: 10.1016/j.jmaa.2004.09.050.

[1]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic and Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[2]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[3]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[4]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[5]

J. Ignacio Tello. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 3003-3023. doi: 10.3934/dcdss.2022045

[6]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic and Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[7]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[8]

Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic and Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042

[9]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[10]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[11]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[12]

Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023

[13]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[14]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[15]

Wenji Zhang. Global generalized solvability in the Keller-Segel system with singular sensitivity and arbitrary superlinear degradation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022121

[16]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic and Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[17]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[18]

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049

[19]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007

[20]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]