Citation: |
[1] |
S. N. Antontsev and N. V. Chemetov, Flux of superconducting vortices through a domain, SIAM J. Math. Anal., 39 (2007), 263-280.doi: 10.1137/060655146. |
[2] |
S. N. Antontsev and N. V. Chemetov, Superconducting Vortices: Chapman Full Model, in "New Directions in Mathematical Fluid Mechanics: The Alexander V. Kazhikhov memorial volume," doi: 10.1007/978-3-0346-0152-8_3. |
[3] |
S. J. Chapman, A hierarchy of models for type-II superconductors, SIAM Review, 42 (2000), 555-598.doi: 10.1137/S0036144599371913. |
[4] |
S. J. Chapman, A Mean-Field Model of Superconducting Vortices in Three Dimensions, SIAM J. Appl. Math., 55 (1995), 1259-1274.doi: 10.1137/S0036139994263665. |
[5] |
G.-Q. Chen and H. Frid, On the theory of divergence-measure fields and its applications, Bol. Soc. Bras. Mat., 32 (2001), 401-433.doi: 10.1007/BF01233674. |
[6] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, 1999. |
[7] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983. |
[8] |
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I) Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165; II) Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. |
[9] |
C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio, Bourbaki Seminar, Preprint (2007), 1-26. |
[10] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Linear and Quasilinear Equations of Parabolic Type," American Mathematical Society, Providence RJ, 1968. |
[11] |
O. A. Ladyzhenskaya and N. N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Academic Press, New York and London, 1968. |
[12] |
J. L. Lions and E. Magenes, "Problèmes aux limites non Homogénes et Applications," Dunod, Paris, 1968. |
[13] |
J. Malek, J. Necas, M. Rokyta and M. Ruzicka, "Weak and Measure-valued Solutions to Evolutionary PDEs," Chapman & Hall, London, 1996. |
[14] |
B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.doi: 10.1090/S0002-9947-08-04656-4. |
[15] |
P. I. Plotnikov, "Ultraparabolic Muskat Equations," Preprint No. 6, University Beira Interior, Covilhã (Portugal), 2000. |
[16] |
P. Plotnikov and S. Sazhenkov, Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation, J. Math. Anal. Appl., 304 (2005), 703-724.doi: 10.1016/j.jmaa.2004.09.050. |