-
Previous Article
The Cauchy-Kovalevskaya extension theorem in discrete Clifford analysis
- CPAA Home
- This Issue
-
Next Article
Nonlinear Neumann equations driven by a nonhomogeneous differential operator
Nonlinear hyperbolic-elliptic systems in the bounded domain
1. | CMAF/Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal |
References:
[1] |
S. N. Antontsev and N. V. Chemetov, Flux of superconducting vortices through a domain, SIAM J. Math. Anal., 39 (2007), 263-280.
doi: 10.1137/060655146. |
[2] |
S. N. Antontsev and N. V. Chemetov, Superconducting Vortices: Chapman Full Model,, in, ().
doi: 10.1007/978-3-0346-0152-8_3. |
[3] |
S. J. Chapman, A hierarchy of models for type-II superconductors, SIAM Review, 42 (2000), 555-598.
doi: 10.1137/S0036144599371913. |
[4] |
S. J. Chapman, A Mean-Field Model of Superconducting Vortices in Three Dimensions, SIAM J. Appl. Math., 55 (1995), 1259-1274.
doi: 10.1137/S0036139994263665. |
[5] |
G.-Q. Chen and H. Frid, On the theory of divergence-measure fields and its applications, Bol. Soc. Bras. Mat., 32 (2001), 401-433.
doi: 10.1007/BF01233674. |
[6] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, 1999. |
[7] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983. |
[8] |
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I) Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165; II) Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. |
[9] |
C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio, Bourbaki Seminar, Preprint (2007), 1-26. |
[10] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Linear and Quasilinear Equations of Parabolic Type," American Mathematical Society, Providence RJ, 1968. |
[11] |
O. A. Ladyzhenskaya and N. N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Academic Press, New York and London, 1968. |
[12] |
J. L. Lions and E. Magenes, "Problèmes aux limites non Homogénes et Applications," Dunod, Paris, 1968. |
[13] |
J. Malek, J. Necas, M. Rokyta and M. Ruzicka, "Weak and Measure-valued Solutions to Evolutionary PDEs," Chapman & Hall, London, 1996. |
[14] |
B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.
doi: 10.1090/S0002-9947-08-04656-4. |
[15] |
P. I. Plotnikov, "Ultraparabolic Muskat Equations," Preprint No. 6, University Beira Interior, Covilhã (Portugal), 2000. |
[16] |
P. Plotnikov and S. Sazhenkov, Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation, J. Math. Anal. Appl., 304 (2005), 703-724.
doi: 10.1016/j.jmaa.2004.09.050. |
show all references
References:
[1] |
S. N. Antontsev and N. V. Chemetov, Flux of superconducting vortices through a domain, SIAM J. Math. Anal., 39 (2007), 263-280.
doi: 10.1137/060655146. |
[2] |
S. N. Antontsev and N. V. Chemetov, Superconducting Vortices: Chapman Full Model,, in, ().
doi: 10.1007/978-3-0346-0152-8_3. |
[3] |
S. J. Chapman, A hierarchy of models for type-II superconductors, SIAM Review, 42 (2000), 555-598.
doi: 10.1137/S0036144599371913. |
[4] |
S. J. Chapman, A Mean-Field Model of Superconducting Vortices in Three Dimensions, SIAM J. Appl. Math., 55 (1995), 1259-1274.
doi: 10.1137/S0036139994263665. |
[5] |
G.-Q. Chen and H. Frid, On the theory of divergence-measure fields and its applications, Bol. Soc. Bras. Mat., 32 (2001), 401-433.
doi: 10.1007/BF01233674. |
[6] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, 1999. |
[7] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983. |
[8] |
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I) Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165; II) Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. |
[9] |
C. De Lellis, Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio, Bourbaki Seminar, Preprint (2007), 1-26. |
[10] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, "Linear and Quasilinear Equations of Parabolic Type," American Mathematical Society, Providence RJ, 1968. |
[11] |
O. A. Ladyzhenskaya and N. N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Academic Press, New York and London, 1968. |
[12] |
J. L. Lions and E. Magenes, "Problèmes aux limites non Homogénes et Applications," Dunod, Paris, 1968. |
[13] |
J. Malek, J. Necas, M. Rokyta and M. Ruzicka, "Weak and Measure-valued Solutions to Evolutionary PDEs," Chapman & Hall, London, 1996. |
[14] |
B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.
doi: 10.1090/S0002-9947-08-04656-4. |
[15] |
P. I. Plotnikov, "Ultraparabolic Muskat Equations," Preprint No. 6, University Beira Interior, Covilhã (Portugal), 2000. |
[16] |
P. Plotnikov and S. Sazhenkov, Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation, J. Math. Anal. Appl., 304 (2005), 703-724.
doi: 10.1016/j.jmaa.2004.09.050. |
[1] |
Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic and Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035 |
[2] |
Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181 |
[3] |
Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061 |
[4] |
Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066 |
[5] |
J. Ignacio Tello. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022045 |
[6] |
Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic and Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012 |
[7] |
Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79 |
[8] |
Hongyun Peng, Zhi-An Wang, Kun Zhao, Changjiang Zhu. Boundary layers and stabilization of the singular Keller-Segel system. Kinetic and Related Models, 2018, 11 (5) : 1085-1123. doi: 10.3934/krm.2018042 |
[9] |
Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 |
[10] |
Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023 |
[11] |
Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078 |
[12] |
Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317 |
[13] |
Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717 |
[14] |
Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 |
[15] |
Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic and Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299 |
[16] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011 |
[17] |
Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049 |
[18] |
Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007 |
[19] |
Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81 |
[20] |
Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]