-
Previous Article
On the similarity of Hamiltonian and reversible vector fields in 4D
- CPAA Home
- This Issue
-
Next Article
Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation
On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation
1. | Departamento de Matemáticas, Universidad Nacional de Colombia, A. A. 3840 Medellín, Colombia, Colombia |
$ \partial _t u+\partial^3_x u+\partial^{-1}_x\partial^2_y u+u\partial_x u =0, $
that have compact support for two different times are identically zero.
References:
[1] |
Internat. Math. Res. Notices, 9 (1997), 437-447.
doi: 10.1155/S1073792897000305. |
[2] |
J. Funct. Anal., 244 (2007), 504-535.
doi: 10.1016/j.jfa.2006.11.004. |
[3] |
Math. Res. Lett., 15 (2008), 957-971. |
[4] |
Inverse Problems, 8 (1992), 673-708.
doi: 10.1088/0266-5611/8/5/002. |
[5] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.
doi: 10.1016/j.anihpc.2008.04.002. |
[6] |
Comm. Partial Differential Equations, 26 (2001), 1027-1054.
doi: 10.1081/PDE-100002387. |
[7] |
Electron. J. Differential Equations, 2003 (2003), 1-12. |
[8] |
J. Differential Equations, 247 (2009), 1851-1865.
doi: 10.1016/j.jde.2009.03.022. |
[9] |
Nonlinear Anal., 72 (2010), 4016-4029.
doi: 10.1016/j.na.2010.01.033. |
[10] |
Ann. Inst. H. Poincaré Anal. Non linéaire, 19 (2002), 191-208.
doi: 10.1016/S0294-1449(01)00073-7. |
[11] |
Electron. J. Differential Equations, 2005 (2005), 1-12. |
[12] |
Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. |
[13] |
J. Differential Equations, 66 (1987), 118-139.
doi: 10.1016/0022-0396(87)90043-X. |
[14] |
Internat. Math. Res. Notices, 2 (2001), 77-114.
doi: 10.1155/S1073792801000058. |
show all references
References:
[1] |
Internat. Math. Res. Notices, 9 (1997), 437-447.
doi: 10.1155/S1073792897000305. |
[2] |
J. Funct. Anal., 244 (2007), 504-535.
doi: 10.1016/j.jfa.2006.11.004. |
[3] |
Math. Res. Lett., 15 (2008), 957-971. |
[4] |
Inverse Problems, 8 (1992), 673-708.
doi: 10.1088/0266-5611/8/5/002. |
[5] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.
doi: 10.1016/j.anihpc.2008.04.002. |
[6] |
Comm. Partial Differential Equations, 26 (2001), 1027-1054.
doi: 10.1081/PDE-100002387. |
[7] |
Electron. J. Differential Equations, 2003 (2003), 1-12. |
[8] |
J. Differential Equations, 247 (2009), 1851-1865.
doi: 10.1016/j.jde.2009.03.022. |
[9] |
Nonlinear Anal., 72 (2010), 4016-4029.
doi: 10.1016/j.na.2010.01.033. |
[10] |
Ann. Inst. H. Poincaré Anal. Non linéaire, 19 (2002), 191-208.
doi: 10.1016/S0294-1449(01)00073-7. |
[11] |
Electron. J. Differential Equations, 2005 (2005), 1-12. |
[12] |
Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. |
[13] |
J. Differential Equations, 66 (1987), 118-139.
doi: 10.1016/0022-0396(87)90043-X. |
[14] |
Internat. Math. Res. Notices, 2 (2001), 77-114.
doi: 10.1155/S1073792801000058. |
[1] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[2] |
Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021070 |
[3] |
Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021069 |
[4] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[5] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[6] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[7] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377 |
[8] |
Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027 |
[9] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021104 |
[10] |
Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243 |
[11] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[12] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[13] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[14] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[15] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022 |
[16] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[17] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[18] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392 |
[19] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[20] |
Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]