\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation

Abstract Related Papers Cited by
  • In this article we prove that sufficiently smooth solutions of the Kadomtsev-Petviashvili (KP-II) equation:

    $ \partial _t u+\partial^3_x u+\partial^{-1}_x\partial^2_y u+u\partial_x u =0, $

    that have compact support for two different times are identically zero.

    Mathematics Subject Classification: Primary: 35Q53; Secondary: 37K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bourgain, On the compactness of the support of solutions of dispersive equations, Internat. Math. Res. Notices, 9 (1997), 437-447.doi: 10.1155/S1073792897000305.

    [2]

    L. Escauriaza, C. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of the k-Generalized KdV equations, J. Funct. Anal., 244 (2007), 504-535.doi: 10.1016/j.jfa.2006.11.004.

    [3]

    L. Escauriaza, C. Kenig, G. Ponce and L. Vega, Convexity properties of solutions to the free Schrödinger equation with Gaussian decay, Math. Res. Lett., 15 (2008), 957-971.

    [4]

    A. S. Fokas and L. Y. Sung, On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations, Inverse Problems, 8 (1992), 673-708.doi: 10.1088/0266-5611/8/5/002.

    [5]

    M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.doi: 10.1016/j.anihpc.2008.04.002.

    [6]

    P. Isaza and J. Mejía, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations, 26 (2001), 1027-1054.doi: 10.1081/PDE-100002387.

    [7]

    P. Isaza and J. Mejía, Global solutions for the Kadomtsev-Petviashvili (KP-II) equation in anisotropic Sobolev spaces of negative indices, Electron. J. Differential Equations, 2003 (2003), 1-12.

    [8]

    P. Isaza and J. Mejía, On the support of solutions to the Ostrovsky equation with negative dispersion, J. Differential Equations, 247 (2009), 1851-1865.doi: 10.1016/j.jde.2009.03.022.

    [9]

    P. Isaza and J. Mejía, On the support of solutions to the Ostrovsky equation with positive dispersion, Nonlinear Anal., 72 (2010), 4016-4029.doi: 10.1016/j.na.2010.01.033.

    [10]

    C. Kenig, G. Ponce and L. Vega, On the support of solutions to the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non linéaire, 19 (2002), 191-208.doi: 10.1016/S0294-1449(01)00073-7.

    [11]

    M. Panthee, Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation, Electron. J. Differential Equations, 2005 (2005), 1-12.

    [12]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

    [13]

    J. C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Differential Equations, 66 (1987), 118-139.doi: 10.1016/0022-0396(87)90043-X.

    [14]

    H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation, Internat. Math. Res. Notices, 2 (2001), 77-114.doi: 10.1155/S1073792801000058.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(58) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return