$ \partial _t u+\partial^3_x u+\partial^{-1}_x\partial^2_y u+u\partial_x u =0, $
that have compact support for two different times are identically zero.
Citation: |
[1] |
J. Bourgain, On the compactness of the support of solutions of dispersive equations, Internat. Math. Res. Notices, 9 (1997), 437-447.doi: 10.1155/S1073792897000305. |
[2] |
L. Escauriaza, C. Kenig, G. Ponce and L. Vega, On uniqueness properties of solutions of the k-Generalized KdV equations, J. Funct. Anal., 244 (2007), 504-535.doi: 10.1016/j.jfa.2006.11.004. |
[3] |
L. Escauriaza, C. Kenig, G. Ponce and L. Vega, Convexity properties of solutions to the free Schrödinger equation with Gaussian decay, Math. Res. Lett., 15 (2008), 957-971. |
[4] |
A. S. Fokas and L. Y. Sung, On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations, Inverse Problems, 8 (1992), 673-708.doi: 10.1088/0266-5611/8/5/002. |
[5] |
M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.doi: 10.1016/j.anihpc.2008.04.002. |
[6] |
P. Isaza and J. Mejía, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Differential Equations, 26 (2001), 1027-1054.doi: 10.1081/PDE-100002387. |
[7] |
P. Isaza and J. Mejía, Global solutions for the Kadomtsev-Petviashvili (KP-II) equation in anisotropic Sobolev spaces of negative indices, Electron. J. Differential Equations, 2003 (2003), 1-12. |
[8] |
P. Isaza and J. Mejía, On the support of solutions to the Ostrovsky equation with negative dispersion, J. Differential Equations, 247 (2009), 1851-1865.doi: 10.1016/j.jde.2009.03.022. |
[9] |
P. Isaza and J. Mejía, On the support of solutions to the Ostrovsky equation with positive dispersion, Nonlinear Anal., 72 (2010), 4016-4029.doi: 10.1016/j.na.2010.01.033. |
[10] |
C. Kenig, G. Ponce and L. Vega, On the support of solutions to the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non linéaire, 19 (2002), 191-208.doi: 10.1016/S0294-1449(01)00073-7. |
[11] |
M. Panthee, Unique continuation property for the Kadomtsev-Petviashvili (KP-II) equation, Electron. J. Differential Equations, 2005 (2005), 1-12. |
[12] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. |
[13] |
J. C. Saut and B. Scheurer, Unique continuation for some evolution equations, J. Differential Equations, 66 (1987), 118-139.doi: 10.1016/0022-0396(87)90043-X. |
[14] |
H. Takaoka and N. Tzvetkov, On the local regularity of Kadomtsev-Petviashvili-II equation, Internat. Math. Res. Notices, 2 (2001), 77-114.doi: 10.1155/S1073792801000058. |