July  2011, 10(4): 1257-1266. doi: 10.3934/cpaa.2011.10.1257

On the similarity of Hamiltonian and reversible vector fields in 4D

1. 

Department of Mathematics, IMECC, Unicamp, 13083-970, Campinas SP, Brazil

2. 

Departamento de Matemática, Universidade Estadual de Campinas, Caixa Postal 6065, 13083-970, Campinas, S.P., Brazil

Received  July 2010 Revised  September 2010 Published  April 2011

We study the existence of formal conjugacies between reversible vector fields and Hamiltonian vector fields in 4D around a generic singularity. We construct conjugacies for a generic class of reversible vector fields. We also show that reversible vector fields are formally orbitally equivalent to polynomial decoupled Hamiltonian vector fields. The main tool we employ is the normal form theory.
Citation: Ricardo Miranda Martins, Marco Antonio Teixeira. On the similarity of Hamiltonian and reversible vector fields in 4D. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1257-1266. doi: 10.3934/cpaa.2011.10.1257
References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics," Benjamin Cummings, London, 1978.

[2]

V. I. Arnold, "Arnold's Problems," Springer-Verlag, Berlin, 2004.

[3]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,'' Springer-Verlag, New York, 1988.

[4]

G. D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., 18 (1917), 199-300. doi: 10.2307/1988861.

[5]

R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc., 218 (1976), 89-113. doi: 10.2307/1997429.

[6]

G. Gaeta, Normal Forms of reversible dynamical systems, International Journal of Theoretical Physics, 33 (1994), 1917-1928. doi: 10.1007/BF00671033.

[7]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits, Annali di Matematica Pura ed Applicata, 187 (2008), 105-117.

[8]

J. S. W. Lamb, M. F. S. Lima, R. M. Martins, M. A. Teixeira and J. Yang, On the Hamiltonian structure of normal forms at elliptic equilibria of reversible vector fields in $R^4$, IMECC/Unicamp Research Report 05/10, 2010. Available from: http://www1.ime.unicamp.br/rel_pesq/relatorio.html.

[9]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, Hamiltonian Structure of the Reversible Nonsemisimple $1:1$ Resonance, in "Dynamics, Bifurcation and Symmetry: New Trends and New Tools", Kluwer Academic Publishers, (1994), 221-240.

[10]

G. B. Price, On reversible dynamical systems, Trans. Amer. Math. Soc., 37 (1935), 51-79. doi: 10.2307/1989695.

[11]

M. A. Teixeira, Singularities of reversible vector fields, Phys. D, 100 (1997), 101-118. doi: 10.1016/S0167-2789(96)00183-2.

show all references

References:
[1]

R. Abraham and J. Marsden, "Foundations of Mechanics," Benjamin Cummings, London, 1978.

[2]

V. I. Arnold, "Arnold's Problems," Springer-Verlag, Berlin, 2004.

[3]

V. I. Arnold, "Geometrical Methods in the Theory of Ordinary Differential Equations,'' Springer-Verlag, New York, 1988.

[4]

G. D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc., 18 (1917), 199-300. doi: 10.2307/1988861.

[5]

R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc., 218 (1976), 89-113. doi: 10.2307/1997429.

[6]

G. Gaeta, Normal Forms of reversible dynamical systems, International Journal of Theoretical Physics, 33 (1994), 1917-1928. doi: 10.1007/BF00671033.

[7]

A. Jacquemard, M. F. S. Lima and M. A. Teixeira, Degenerate resonances and branching of periodic orbits, Annali di Matematica Pura ed Applicata, 187 (2008), 105-117.

[8]

J. S. W. Lamb, M. F. S. Lima, R. M. Martins, M. A. Teixeira and J. Yang, On the Hamiltonian structure of normal forms at elliptic equilibria of reversible vector fields in $R^4$, IMECC/Unicamp Research Report 05/10, 2010. Available from: http://www1.ime.unicamp.br/rel_pesq/relatorio.html.

[9]

J. C. van der Meer, J. A. Sanders and A. Vanderbauwhede, Hamiltonian Structure of the Reversible Nonsemisimple $1:1$ Resonance, in "Dynamics, Bifurcation and Symmetry: New Trends and New Tools", Kluwer Academic Publishers, (1994), 221-240.

[10]

G. B. Price, On reversible dynamical systems, Trans. Amer. Math. Soc., 37 (1935), 51-79. doi: 10.2307/1989695.

[11]

M. A. Teixeira, Singularities of reversible vector fields, Phys. D, 100 (1997), 101-118. doi: 10.1016/S0167-2789(96)00183-2.

[1]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[2]

Robert Roussarie. A topological study of planar vector field singularities. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5217-5245. doi: 10.3934/dcds.2020226

[3]

Nikolay A. Gusev. On the one-dimensional continuity equation with a nearly incompressible vector field. Communications on Pure and Applied Analysis, 2019, 18 (2) : 559-568. doi: 10.3934/cpaa.2019028

[4]

Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002

[5]

Angela Aguglia, Antonio Cossidente, Giuseppe Marino, Francesco Pavese, Alessandro Siciliano. Orbit codes from forms on vector spaces over a finite field. Advances in Mathematics of Communications, 2022, 16 (1) : 135-155. doi: 10.3934/amc.2020105

[6]

Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763

[7]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure and Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[8]

Biao Ou. Examinations on a three-dimensional differentiable vector field that equals its own curl. Communications on Pure and Applied Analysis, 2003, 2 (2) : 251-257. doi: 10.3934/cpaa.2003.2.251

[9]

Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control and Related Fields, 2021, 11 (2) : 403-431. doi: 10.3934/mcrf.2020042

[10]

Xiaojun Zheng, Zhongdan Huan, Jun Liu. On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2679-2700. doi: 10.3934/cpaa.2022068

[11]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[12]

Tomas Johnson, Warwick Tucker. Automated computation of robust normal forms of planar analytic vector fields. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 769-782. doi: 10.3934/dcdsb.2009.12.769

[13]

Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375

[14]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[15]

Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181

[16]

Gayatri Pany, Ram N. Mohapatra. A study on vector variational-like inequalities using convexificators and application to its bi-level form. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021161

[17]

Alberto Ibort, Amelia Spivak. Covariant Hamiltonian field theories on manifolds with boundary: Yang-Mills theories. Journal of Geometric Mechanics, 2017, 9 (1) : 47-82. doi: 10.3934/jgm.2017002

[18]

Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51

[19]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[20]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (4)

[Back to Top]