- Previous Article
- CPAA Home
- This Issue
-
Next Article
Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces
Alternative proof for the existence of Green's function
1. | Department of Mathematics Education, Gwangju National University of Education, 93 Pilmunlo Bugku, Gwangju 500-703, South Korea |
References:
[1] |
A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble), 28 (1978), 169-213, x. See also for corrections: "Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien'' [Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 169-213; [MR 80d:31006], Potential theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979), Lecture Notes in Math., vol. 787, p. 28. (1980) Springer, Berlin. |
[2] |
D. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694. |
[3] |
P. Auscher, Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc., 54 (1996), 284-296.
doi: 10.1112/jlms/54.2.284. |
[4] |
P. Bauman, Equivalence of the Green's functions for diffusion operators in $R^n$: a counterexample, Proc. Amer. Math. Soc., 91 (1984), 64-68.
doi: 10.1090/S0002-9939-1984-0735565-4. |
[5] |
P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat., 22 (1984), 153-173.
doi: 10.1007/BF02384378. |
[6] |
S. Cho, Two-sided global estimates of the Green's function of parabolic equations, Potential Analysis, 25 (2006), 387-398.
doi: doi:10.1007/s11118-006-9026-0. |
[7] |
R. Courant and D. Hilbert, "Methods of Mathematical Physics," Vol. II., reprint of the 1962 original, John Wiley & Sons Inc., New York, 1989. |
[8] |
E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Univ. Press, Cambridge, UK 1989.
doi: 10.1017/CBO9780511566158. |
[9] |
S. Èĭdel'man, "Parabolicheskie sistemy," Izdat. "Nauka'', Moscow, 1964. Translation: "Parabolic systems," North-Holland Publishing Co., Amsterdam, 1964. |
[10] |
L. Escauriaza, Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form, Comm. Partial Differential Equations, 25 (2000), 821-845.
doi: 10.1080/03605300008821533. |
[11] |
E. Fabes, N. Garofalo and S. Salsa, A control on the set where a Green's function vanishes, Colloq. Math., 60/61 (1990), 637-647. |
[12] |
A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice Hall, 1964. |
[13] |
A. Il'in, A. Kalašnikov and O. Oleĭnik, Second-order linear equations of parabolic type, Uspehi Mat. Nauk, 17 (1962), 3-146.
doi: 10.1070/RM1962v017n03ABEH004115. |
[14] |
H. Kalf, On E. E. Levi's method of constructing a fundamental solution for second-order elliptic equations, Rend. Circ. Mat. Palermo, 41 (1992), 251-294.
doi: 10.1007/BF02844669. |
[15] |
O. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva, "Linear and Quasi-linear Equations of Parabolic Type," Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967. |
[16] |
E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali., Rend. Circ. Mat. Palermo, 24 (1907), 275-317. |
[17] |
E. Levi, I problemi dei valori al contorno per le equazioni lineari totalmente ellittiche alle derivate parziali., Memorie Mat. Fis. Soc. Ital. Scienze (detta dei XL) 16 (1909) 3-113 |
[18] |
G. Lieberman, "Second Order Parabolic Differential Equations," World Scientific, 1996. |
[19] |
V. Liskevich and Y. Semenov, Estimates for fundamental solutions of second-order parabolic equations, J. London Math. Soc., 62 (2000), 521-543.
doi: 10.1112/S0024610700001332. |
[20] |
E. Ouhabaz, "Analysis of Heat Equations on Domains," London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, NJ, 2005. |
[21] |
F. Porper and S. Èĭdel'man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them, Uspekhi Math. Nauk, 39 (1984), 107-156.
doi: 10.1070/RM1984v039n03ABEH003164. |
[22] |
L. Saloff-Coste, "Aspects of Sobolev-type Inequalities," London Mathematical Society Lecture Note Series 289, Cambridge University Press, 2002. |
[23] |
P. Sjögren, On the adjoint of an elliptic linear differential operator and its potential theory, Ark. Mat., 11 (1973), 153-165.
doi: 10.1007/BF02388513. |
[24] |
W. Sternberg, Über die lineare elliptische Differentialgleichung zweiter Ordnung mit drei unabhängigen Veränderlichen, Math. Z., 21 (1924), 286-311.
doi: 10.1007/BF01187471. |
[25] |
Q. Zhang, The boundary behavior of heat kernels of Dirichlet Laplacians, Journal of Differential Equations, 182 (2002), 416-430.
doi: 10.1006/jdeq.2001.4112. |
show all references
References:
[1] |
A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble), 28 (1978), 169-213, x. See also for corrections: "Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien'' [Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 169-213; [MR 80d:31006], Potential theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979), Lecture Notes in Math., vol. 787, p. 28. (1980) Springer, Berlin. |
[2] |
D. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694. |
[3] |
P. Auscher, Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc., 54 (1996), 284-296.
doi: 10.1112/jlms/54.2.284. |
[4] |
P. Bauman, Equivalence of the Green's functions for diffusion operators in $R^n$: a counterexample, Proc. Amer. Math. Soc., 91 (1984), 64-68.
doi: 10.1090/S0002-9939-1984-0735565-4. |
[5] |
P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat., 22 (1984), 153-173.
doi: 10.1007/BF02384378. |
[6] |
S. Cho, Two-sided global estimates of the Green's function of parabolic equations, Potential Analysis, 25 (2006), 387-398.
doi: doi:10.1007/s11118-006-9026-0. |
[7] |
R. Courant and D. Hilbert, "Methods of Mathematical Physics," Vol. II., reprint of the 1962 original, John Wiley & Sons Inc., New York, 1989. |
[8] |
E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge Univ. Press, Cambridge, UK 1989.
doi: 10.1017/CBO9780511566158. |
[9] |
S. Èĭdel'man, "Parabolicheskie sistemy," Izdat. "Nauka'', Moscow, 1964. Translation: "Parabolic systems," North-Holland Publishing Co., Amsterdam, 1964. |
[10] |
L. Escauriaza, Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form, Comm. Partial Differential Equations, 25 (2000), 821-845.
doi: 10.1080/03605300008821533. |
[11] |
E. Fabes, N. Garofalo and S. Salsa, A control on the set where a Green's function vanishes, Colloq. Math., 60/61 (1990), 637-647. |
[12] |
A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice Hall, 1964. |
[13] |
A. Il'in, A. Kalašnikov and O. Oleĭnik, Second-order linear equations of parabolic type, Uspehi Mat. Nauk, 17 (1962), 3-146.
doi: 10.1070/RM1962v017n03ABEH004115. |
[14] |
H. Kalf, On E. E. Levi's method of constructing a fundamental solution for second-order elliptic equations, Rend. Circ. Mat. Palermo, 41 (1992), 251-294.
doi: 10.1007/BF02844669. |
[15] |
O. Ladyzhenskaya, V. Solonnikov and N. Ural'tseva, "Linear and Quasi-linear Equations of Parabolic Type," Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967. |
[16] |
E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali., Rend. Circ. Mat. Palermo, 24 (1907), 275-317. |
[17] |
E. Levi, I problemi dei valori al contorno per le equazioni lineari totalmente ellittiche alle derivate parziali., Memorie Mat. Fis. Soc. Ital. Scienze (detta dei XL) 16 (1909) 3-113 |
[18] |
G. Lieberman, "Second Order Parabolic Differential Equations," World Scientific, 1996. |
[19] |
V. Liskevich and Y. Semenov, Estimates for fundamental solutions of second-order parabolic equations, J. London Math. Soc., 62 (2000), 521-543.
doi: 10.1112/S0024610700001332. |
[20] |
E. Ouhabaz, "Analysis of Heat Equations on Domains," London Mathematical Society Monographs Series 31, Princeton University Press, Princeton, NJ, 2005. |
[21] |
F. Porper and S. Èĭdel'man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them, Uspekhi Math. Nauk, 39 (1984), 107-156.
doi: 10.1070/RM1984v039n03ABEH003164. |
[22] |
L. Saloff-Coste, "Aspects of Sobolev-type Inequalities," London Mathematical Society Lecture Note Series 289, Cambridge University Press, 2002. |
[23] |
P. Sjögren, On the adjoint of an elliptic linear differential operator and its potential theory, Ark. Mat., 11 (1973), 153-165.
doi: 10.1007/BF02388513. |
[24] |
W. Sternberg, Über die lineare elliptische Differentialgleichung zweiter Ordnung mit drei unabhängigen Veränderlichen, Math. Z., 21 (1924), 286-311.
doi: 10.1007/BF01187471. |
[25] |
Q. Zhang, The boundary behavior of heat kernels of Dirichlet Laplacians, Journal of Differential Equations, 182 (2002), 416-430.
doi: 10.1006/jdeq.2001.4112. |
[1] |
Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure and Applied Analysis, 2022, 21 (1) : 1-21. doi: 10.3934/cpaa.2021164 |
[2] |
Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407 |
[3] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[4] |
Mourad Choulli. Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions. Evolution Equations and Control Theory, 2015, 4 (1) : 61-67. doi: 10.3934/eect.2015.4.61 |
[5] |
Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007 |
[6] |
Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791 |
[7] |
Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335 |
[8] |
Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92 |
[9] |
Shengxin Zhu. Summation of Gaussian shifts as Jacobi's third Theta function. Mathematical Foundations of Computing, 2020, 3 (3) : 157-163. doi: 10.3934/mfc.2020015 |
[10] |
Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745 |
[11] |
Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001 |
[12] |
Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139 |
[13] |
David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037 |
[14] |
Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040 |
[15] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340 |
[16] |
Jiann-Sheng Jiang, Kung-Hwang Kuo, Chi-Kun Lin. Homogenization of second order equation with spatial dependent coefficient. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 303-313. doi: 10.3934/dcds.2005.12.303 |
[17] |
Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001 |
[18] |
Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543 |
[19] |
Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487 |
[20] |
Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]