-
Previous Article
Existence of chaos in weakly quasilinear systems
- CPAA Home
- This Issue
-
Next Article
Preface
$H^{1,p}$-eigenvalues and $L^\infty$-estimates in quasicylindrical domains
1. | Dipartimento di Matematica e Informatica, Università di Salerno, P. Grahamstown, Fisciano, SA I-84084 |
References:
[1] |
R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65. [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
doi: ISBN:0120441500. |
[2] |
H. Brezis, "Analyse fonctionnelle. (French) [Functional analysis] Théorie et applications. [Theory and applications]," Collection Mathématiques Appliquées pour la Matrise. [Collection of Applied Mathematics for the Master's Degree] Masson, Paris, 1983.
doi: ISBN:9782225771989. |
[3] |
X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hlder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., 48 (1995), 539-570.
doi: 10.1002/cpa.3160480504. |
[4] |
V. Cafagna and A. Vitolo, On the maximum principle for second-order elliptic operators in unbounded domains, C. R. Math. Acad. Sci. Paris, 334 (2002), 359-363.
doi: 10.1016/S1631-073X(02)02267-7. |
[5] |
I. Capuzzo Dolcetta and A. Vitolo, On the maximum principle for viscosity solutions of fully nonlinear elliptic equations in general domains, Matematiche (Catania), 62 (2007), 69-91.
doi: ISSN 0373-3505; ISSN 2037-5298. |
[6] |
I. Ekeland and R. Temam, Translated from the French. Studies in Mathematics and its Applications, Vol. 1. "Convex Analysis and Variational Problems," North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976.
doi: ISBN:0898714508. |
[7] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer Verlag, Berlin, 2001.
doi: ISBN:3540411607. |
[8] |
W. K. Hayman, Some bounds for principal frequency,, Appl. Anal., 7 (): 247.
doi: 10.1080/00036817808839195. |
[9] |
B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolinae, 44 (2003), 659-667.
doi: ISSN:0010-2628. |
[10] |
E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448.
doi: 10.1007/BF01394245. |
[11] |
V. Maz'ya and M. A. Shubin, Can one see the fundamental frequency of a drum?, Lett. Math. Phys., 74 (2005), 135-151.
doi: ISSN:0377-9017. |
[12] |
R. Osserman, A note on Hayman's theorem on the bass note of a drum, Comment. Math. Helv., 52 (1977), 545-555.
doi: 10.1007/BF02567388. |
[13] |
M. Transirico, M. Troisi and A. Vitolo, Spaces of Morrey type and elliptic equations in divergence form on unbounded domains, Boll. Un. Mat. Ital. B (7), 9 (1995), 153-174.
doi: ISSN:0392-4041. |
[14] |
A. Vitolo, A note on the maximum principle for complete second-order elliptic operators in general domains, Acta Math. Sin. (Engl. Ser.), 23 (2007), 1955-1966.
doi: 10.1007/s10114-007-0976-y. |
show all references
References:
[1] |
R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65. [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
doi: ISBN:0120441500. |
[2] |
H. Brezis, "Analyse fonctionnelle. (French) [Functional analysis] Théorie et applications. [Theory and applications]," Collection Mathématiques Appliquées pour la Matrise. [Collection of Applied Mathematics for the Master's Degree] Masson, Paris, 1983.
doi: ISBN:9782225771989. |
[3] |
X. Cabré, On the Alexandroff-Bakel'man-Pucci estimate and the reversed Hlder inequality for solutions of elliptic and parabolic equations, Comm. Pure Appl. Math., 48 (1995), 539-570.
doi: 10.1002/cpa.3160480504. |
[4] |
V. Cafagna and A. Vitolo, On the maximum principle for second-order elliptic operators in unbounded domains, C. R. Math. Acad. Sci. Paris, 334 (2002), 359-363.
doi: 10.1016/S1631-073X(02)02267-7. |
[5] |
I. Capuzzo Dolcetta and A. Vitolo, On the maximum principle for viscosity solutions of fully nonlinear elliptic equations in general domains, Matematiche (Catania), 62 (2007), 69-91.
doi: ISSN 0373-3505; ISSN 2037-5298. |
[6] |
I. Ekeland and R. Temam, Translated from the French. Studies in Mathematics and its Applications, Vol. 1. "Convex Analysis and Variational Problems," North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976.
doi: ISBN:0898714508. |
[7] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer Verlag, Berlin, 2001.
doi: ISBN:3540411607. |
[8] |
W. K. Hayman, Some bounds for principal frequency,, Appl. Anal., 7 (): 247.
doi: 10.1080/00036817808839195. |
[9] |
B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolinae, 44 (2003), 659-667.
doi: ISSN:0010-2628. |
[10] |
E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448.
doi: 10.1007/BF01394245. |
[11] |
V. Maz'ya and M. A. Shubin, Can one see the fundamental frequency of a drum?, Lett. Math. Phys., 74 (2005), 135-151.
doi: ISSN:0377-9017. |
[12] |
R. Osserman, A note on Hayman's theorem on the bass note of a drum, Comment. Math. Helv., 52 (1977), 545-555.
doi: 10.1007/BF02567388. |
[13] |
M. Transirico, M. Troisi and A. Vitolo, Spaces of Morrey type and elliptic equations in divergence form on unbounded domains, Boll. Un. Mat. Ital. B (7), 9 (1995), 153-174.
doi: ISSN:0392-4041. |
[14] |
A. Vitolo, A note on the maximum principle for complete second-order elliptic operators in general domains, Acta Math. Sin. (Engl. Ser.), 23 (2007), 1955-1966.
doi: 10.1007/s10114-007-0976-y. |
[1] |
Feng Du, Adriano Cavalcante Bezerra. Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting laplacian. Communications on Pure and Applied Analysis, 2017, 6 (2) : 475-491. doi: 10.3934/cpaa.2017024 |
[2] |
Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209 |
[3] |
Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 301-317. doi: 10.3934/dcds.2021117 |
[4] |
Bo Guan, Heming Jiao. The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 701-714. doi: 10.3934/dcds.2016.36.701 |
[5] |
Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247 |
[6] |
Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709 |
[7] |
Feng Zhou, Zhenqiu Zhang. Pointwise gradient estimates for subquadratic elliptic systems with discontinuous coefficients. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3137-3160. doi: 10.3934/cpaa.2019141 |
[8] |
Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961 |
[9] |
Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029 |
[10] |
E. N. Dancer, Danielle Hilhorst, Shusen Yan. Peak solutions for the Dirichlet problem of an elliptic system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 731-761. doi: 10.3934/dcds.2009.24.731 |
[11] |
Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93. |
[12] |
Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure and Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119 |
[13] |
Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139 |
[14] |
Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4461-4476. doi: 10.3934/dcds.2021043 |
[15] |
Farman Mamedov, Sara Monsurrò, Maria Transirico. Potential estimates and applications to elliptic equations. Conference Publications, 2015, 2015 (special) : 793-800. doi: 10.3934/proc.2015.0793 |
[16] |
Niklas Behringer. Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions. Mathematical Control and Related Fields, 2021, 11 (2) : 313-328. doi: 10.3934/mcrf.2020038 |
[17] |
Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010 |
[18] |
Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101 |
[19] |
Hailiang Li, Houzhi Tang, Haitao Wang. Pointwise estimates of the solution to one dimensional compressible Naiver-Stokes equations in half space. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2603-2636. doi: 10.3934/dcds.2021205 |
[20] |
Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]