-
Previous Article
Exterior differential systems and prolongations for three important nonlinear partial differential equations
- CPAA Home
- This Issue
-
Next Article
$H^{1,p}$-eigenvalues and $L^\infty$-estimates in quasicylindrical domains
Existence of chaos in weakly quasilinear systems
1. | Department of Mathematics, University of Missouri, Columbia, MO 65203, United States |
References:
[1] |
K. Alligood, T. Sauer and J. Yorke, "Chaos,'' Springer, 1997. |
[2] |
Y. Li, "Chaos in Partial Differential Equations,'' International Press, Somerville, MA, USA, 2004. |
[3] |
Y. Li, et al., Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math., XLIX (1996), 1175-1255.
doi: 10.1002/(SICI)1097-0312(199611)49:11<1175::AID-CPA2>3.0.CO;2-9. |
[4] |
Y. Li, Chaos and shadowing lemma for autonomous systems of infinite dimensions, J. Dynam. Diff. Eq., 15 (2003), 699-730.
doi: 10.1023/B:JODY.0000010062.09599.d8. |
[5] |
Y. Li, Chaos and shadowing around a homoclinic tube, Abstr. Appl. Anal., 16 (2003), 923-931.
doi: 10.1155/S1085337503304038. |
[6] |
Y. Li, Homoclinic tubes and chaos in perturbed sine-Gordon equation, Chaos, Solitons and Fractals, 20 (2004), 791-798.
doi: 10.1016/j.chaos.2003.08.013. |
[7] |
Y. Li, Persistent homoclinic orbits for nonlinear Schrödinger equation under singular perturbation, Dynamics of PDE, 1 (2004), 87-123. |
[8] |
Y. Li, Existence of chaos for nonlinear Schrödinger equation under singular perturbation, Dynamics of PDE, 1 (2004), 225-237. |
[9] |
Y. Li, Chaos in Miles' equations, Chaos, Solitons and Fractals, 22 (2004), 965-974.
doi: 10.1016/j.chaos.2004.03.018. |
[10] |
Y. Li, Strange tori of the derivative nonlinear Schrödinger equation, Letters in Mathematical Physics, 80 (2007), 83-99.
doi: 10.1007/s11005-007-0152-4. |
[11] | |
[12] |
H. Steinlein and H.-O. Walther, Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for $C^1$-maps in Banach spaces, J. Dynam. Diff. Eq., 2 (1990), 325-365.
doi: 10.1007/BF01048949. |
[13] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117. |
show all references
References:
[1] |
K. Alligood, T. Sauer and J. Yorke, "Chaos,'' Springer, 1997. |
[2] |
Y. Li, "Chaos in Partial Differential Equations,'' International Press, Somerville, MA, USA, 2004. |
[3] |
Y. Li, et al., Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math., XLIX (1996), 1175-1255.
doi: 10.1002/(SICI)1097-0312(199611)49:11<1175::AID-CPA2>3.0.CO;2-9. |
[4] |
Y. Li, Chaos and shadowing lemma for autonomous systems of infinite dimensions, J. Dynam. Diff. Eq., 15 (2003), 699-730.
doi: 10.1023/B:JODY.0000010062.09599.d8. |
[5] |
Y. Li, Chaos and shadowing around a homoclinic tube, Abstr. Appl. Anal., 16 (2003), 923-931.
doi: 10.1155/S1085337503304038. |
[6] |
Y. Li, Homoclinic tubes and chaos in perturbed sine-Gordon equation, Chaos, Solitons and Fractals, 20 (2004), 791-798.
doi: 10.1016/j.chaos.2003.08.013. |
[7] |
Y. Li, Persistent homoclinic orbits for nonlinear Schrödinger equation under singular perturbation, Dynamics of PDE, 1 (2004), 87-123. |
[8] |
Y. Li, Existence of chaos for nonlinear Schrödinger equation under singular perturbation, Dynamics of PDE, 1 (2004), 225-237. |
[9] |
Y. Li, Chaos in Miles' equations, Chaos, Solitons and Fractals, 22 (2004), 965-974.
doi: 10.1016/j.chaos.2004.03.018. |
[10] |
Y. Li, Strange tori of the derivative nonlinear Schrödinger equation, Letters in Mathematical Physics, 80 (2007), 83-99.
doi: 10.1007/s11005-007-0152-4. |
[11] | |
[12] |
H. Steinlein and H.-O. Walther, Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for $C^1$-maps in Banach spaces, J. Dynam. Diff. Eq., 2 (1990), 325-365.
doi: 10.1007/BF01048949. |
[13] |
W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117. |
[1] |
Goong Chen, Zhonghai Ding, Shujie Li. On positive solutions of the elliptic sine-Gordon equation. Communications on Pure and Applied Analysis, 2005, 4 (2) : 283-294. doi: 10.3934/cpaa.2005.4.283 |
[2] |
Qin Sheng, David A. Voss, Q. M. Khaliq. An adaptive splitting algorithm for the sine-Gordon equation. Conference Publications, 2005, 2005 (Special) : 792-797. doi: 10.3934/proc.2005.2005.792 |
[3] |
Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359 |
[4] |
Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925 |
[5] |
Cornelia Schiebold. Noncommutative AKNS systems and multisoliton solutions to the matrix sine-gordon equation. Conference Publications, 2009, 2009 (Special) : 678-690. doi: 10.3934/proc.2009.2009.678 |
[6] |
Carl-Friedrich Kreiner, Johannes Zimmer. Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 915-931. doi: 10.3934/dcds.2009.25.915 |
[7] |
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025 |
[8] |
Hang Zheng, Yonghui Xia, Manuel Pinto. Chaotic motion and control of the driven-damped Double Sine-Gordon equation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022037 |
[9] |
N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647 |
[10] |
Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871 |
[11] |
Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173 |
[12] |
Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665 |
[13] |
Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311 |
[14] |
Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825 |
[15] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056 |
[16] |
Iuliana Oprea, Gerhard Dangelmayr. A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 273-296. doi: 10.3934/dcdsb.2018095 |
[17] |
Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713 |
[18] |
Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075 |
[19] |
Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507 |
[20] |
Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]