[1]
|
M. J. Ablowitz and H. Segur, "Solitons and the Inverse Scattering Transform," SIAM, Philadelphia, 1981.
|
[2]
|
J. A. Almendral and M. A. F. Sanjuán, Integrability and symmetries for the Helmholtz oscillator with friction, J. Phys. A (Math. Gen.), 36 (2003), 695-710.
|
[3]
|
A. Canada, P. Drabek and A. Fonda, "Handbook of Differential Equations: Ordinary Differential Equations," Volumes 2-3, Elsevier, 2005.
|
[4]
|
V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations, Proc. R. Soc. Lond. Ser. A, 461 (2005), 2451-2476.
|
[5]
|
L. G. S. Duarte, S. E. S. Duarte, A. C. P. da Mota and J. E. F. Skea, Solving the second-order ordinary differential equations by extending the Prelle-Singer method, J. Phys. A (Math. Gen.), 34 (2001), 3015-3024.
|
[6]
|
G. Duffing, "Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz," F. Vieweg u. Sohn, Braunschweig, 1918.
|
[7]
|
Z. Feng, On traveling wave solutions of the Burgers-Korteweg-de Vries equation, Nonlinearity, 20 (2007), 343-356.
|
[8]
|
Z. Feng, The first-integral method to the Burgers-Korteweg-de Vries equation, J. Phys. A (Math. Gen.), 35 (2002), 343-350.
|
[9]
|
Z. Feng, G. Chen and S. B. Hsu, A qualitative study of the damped Duffing equation and applications, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1097-1112.
|
[10]
|
Z. Feng and Q. G. Meng, Exact solution for a two-dimensional KdV-Burgers-type equation with nonlinear terms of any order, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 285-291.
|
[11]
|
Z. Feng and Q. G. Meng, First integrals for the damped Helmholtz oscillator, Int. J. Comput. Math. 87 (2010), 2798-2810.
|
[12]
|
Z. Feng, S. Zheng and D. Y. Gao, Traveling wave solutions to a reaction-diffusion equation, Z. angew. Math. Phys., 60 (2009), 756-773.
|
[13]
|
G. Gao and Z. Feng, First integrals for the Duffng-van der Pol-type oscillator, E. J. Diff. Equs., 2010 (2010), 1-12.
|
[14]
|
M. Gitterman, "The Noisy Oscillator: the First Hundred Years, from Einstein until Now," World Scientific Publishing, Singapore, 2005.
|
[15]
|
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Springer-Verlag, New York, 1983.
|
[16]
|
P. Holmes and D. Rand, Phase portraits and bifurcations of the non-linear oscillator: $\ddotx +(\alpha +\gamma x^2) \dotx + \beta x + \delta x^3=0$, Int. J. Non-Linear Mech., 15 (1980), 449-458.
|
[17]
|
P. E. Hydon, "Symmetry Methods for Differential Equations," Cambridge University Press, New York, 2000.
|
[18]
|
E. I. Ince, "Ordinary Differential Equations," Dover, New York, 1956.
|
[19]
|
D. W. Jordan and P. Smith, "Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers," Oxford University Press, New York, 2007.
|
[20]
|
M. Lakshmanan and S. Rajasekar, "Nonlinear Dynamics: Integrability, Chaos and Patterns," Springer Verlag, New York, 2003.
|
[21]
|
P. J. Olver, "Applications of Lie Groups to Differential Equations," Springer Verlag, New York, 1993.
|
[22]
|
M. Prelle and M. Singer, Elementary first integrals of differential equations, Trans. Am. Math. Soc., 279 (1983), 215-229.
|
[23]
|
A. D. Polyanin and V. F. Zaitsev, "Handbook of Exact Solutions for Ordinary Differential Equations," 2nd edition, London: CRC Press, 2003.
|
[24]
|
A. D. Polyanin, V. F. Zaitsev and A. Moussiaux, "Handbook of First Order Partial Differential Equations," Taylor & Francis, London, 2002.
|
[25]
|
S. N. Rasband, Marginal stability boundaries for some driven, damped, non-linear oscillators, Int. J. Non-Linear Mech., 22 (1987), 477-495.
|
[26]
|
M. Senthil Velan and M. Lakshmanan, Lie symmetries and infinite-dimensional Lie algebras of certain nonlinear dissipative systems, J. Phys. A (Math. Gen.), 28 (1995), 1929-1942.
|
[27]
|
B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review, 1 (1920), 701-710, 754-762.
|
[28]
|
B. van der Pol and J. van der Mark, Frequency demultiplication, Nature, 120 (1927), 363-364.
|
[29]
|
V. F. Zaitsev and A. D. Polyanin, "Handbook of Ordinary Differential Equations," Fizmatlit, Moscow, 2001 (in Russian).
|