September  2011, 10(5): 1401-1414. doi: 10.3934/cpaa.2011.10.1401

Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential

1. 

Département de Mathématiques, Université de Perpignan, Avenue de Villeneuve 52, 66860 Perpignan Cedex

2. 

Ben Gurion University of the Negev, Department of Mathematics, Be'er Sheva 84105, Israel

3. 

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780

Received  March 2009 Revised  August 2010 Published  April 2011

A nonautonomous second order system with a nonsmooth potential is studied. It is assumed that the system is asymptotically linear at infinity and resonant (both at infinity and at the origin), with respect to the zero eigenvalue. Also, it is assumed that the linearization of the system is indefinite. Using a nonsmooth variant of the reduction method and the local linking theorem, we show that the system has at least two nontrivial solutions.
Citation: D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1401-1414. doi: 10.3934/cpaa.2011.10.1401
References:
[1]

H. Amann, Saddle points and multiple solutions of differential equations, Math. Z., 169 (1979), 127-166. doi: 10.1007/BF01215273.

[2]

G. Barletta and R. Livrea, Existence of three periodic solutions for a nonautonomous second order system, Le Mathematiche, 57 (2002), 205-215.

[3]

G. Barletta and N. S. Papageorgiou, Nonautonomous second order periodic systems: existence and multiplicity of solutions, J. Nonlinear Convex Anal., 8 (2007), 373-390.

[4]

G. Bonanno and R. Livrea, Periodic solutions for a class of second order Hamiltonian systems, Electronic J. Differential Equations, 115 (2005), 13 pp.

[5]

A. Castro and A. C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Annali Mat. Pura Appl., 120 (1979), 113-137. doi: 10.1007/BF02411940.

[6]

F. Clarke, "Optimization and Nonsmooth Analysis," Wiley, New York, 1983.

[7]

G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second-order Hamiltonian systems, Abstr. Appl. Anal., 115 (2003), 1037-1045. doi: 10.1155/S1085337503305044.

[8]

F. Faraci, Three periodic solutions for a second order nonautonomous system, J. Nonlinear Convex Anal., 3 (2002), 393-399.

[9]

L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Chapman & Hall/CRC, Boca Raton, FL, 2005.

[10]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Chapman & Hall/CRC, Boca Raton, FL, 2006.

[11]

S. Hu and N. S. Papageorgiou, Nontrivial solutions for superquadratic nonautonomous periodic systems, Topol. Methods Nonlinear Anal., 34 (2009), 327-338.

[12]

J. Mawhin, Forced second order conservative systems with periodic nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 415-434.

[13]

J. Mawhin and M. Willem, "Critical Point Theory And Hamiltonian Systems," Springer-Verlag, New York, 1989.

[14]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Periodic solutions for nonautonomous systems with nonsmooth quadratic or superquadratic potential, Topol. Methods Nonlinear Anal., 24 (2004), 269-296.

[15]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Two nontrivial solutions for periodic systems with indefinite linear part, Discrete Contin. Dyn. Syst., 19 (2007), 197-210. doi: 10.3934/dcds.2007.19.197.

[16]

D. Motreanu and V. Radulescu, "Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems," Kluwer Academic Publishers, Dordrecht, 2003.

[17]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203.

[18]

R. E. Showalter, "Hilbert Space Methods for Partial Differential Equations," Pitman, London-San Francisco, Calif.-Melbourne, 1977.

[19]

C.-L. Tang and X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems, J. Math. Anal. Appl., 275 (2002), 870-882. doi: 10.1016/S0022-247X(02)00442-0.

[20]

K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy. Soc. Edinburgh Sect. A, 85 (1980), 119-129.

show all references

References:
[1]

H. Amann, Saddle points and multiple solutions of differential equations, Math. Z., 169 (1979), 127-166. doi: 10.1007/BF01215273.

[2]

G. Barletta and R. Livrea, Existence of three periodic solutions for a nonautonomous second order system, Le Mathematiche, 57 (2002), 205-215.

[3]

G. Barletta and N. S. Papageorgiou, Nonautonomous second order periodic systems: existence and multiplicity of solutions, J. Nonlinear Convex Anal., 8 (2007), 373-390.

[4]

G. Bonanno and R. Livrea, Periodic solutions for a class of second order Hamiltonian systems, Electronic J. Differential Equations, 115 (2005), 13 pp.

[5]

A. Castro and A. C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Annali Mat. Pura Appl., 120 (1979), 113-137. doi: 10.1007/BF02411940.

[6]

F. Clarke, "Optimization and Nonsmooth Analysis," Wiley, New York, 1983.

[7]

G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second-order Hamiltonian systems, Abstr. Appl. Anal., 115 (2003), 1037-1045. doi: 10.1155/S1085337503305044.

[8]

F. Faraci, Three periodic solutions for a second order nonautonomous system, J. Nonlinear Convex Anal., 3 (2002), 393-399.

[9]

L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Chapman & Hall/CRC, Boca Raton, FL, 2005.

[10]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Chapman & Hall/CRC, Boca Raton, FL, 2006.

[11]

S. Hu and N. S. Papageorgiou, Nontrivial solutions for superquadratic nonautonomous periodic systems, Topol. Methods Nonlinear Anal., 34 (2009), 327-338.

[12]

J. Mawhin, Forced second order conservative systems with periodic nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 415-434.

[13]

J. Mawhin and M. Willem, "Critical Point Theory And Hamiltonian Systems," Springer-Verlag, New York, 1989.

[14]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Periodic solutions for nonautonomous systems with nonsmooth quadratic or superquadratic potential, Topol. Methods Nonlinear Anal., 24 (2004), 269-296.

[15]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Two nontrivial solutions for periodic systems with indefinite linear part, Discrete Contin. Dyn. Syst., 19 (2007), 197-210. doi: 10.3934/dcds.2007.19.197.

[16]

D. Motreanu and V. Radulescu, "Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems," Kluwer Academic Publishers, Dordrecht, 2003.

[17]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184. doi: 10.1002/cpa.3160310203.

[18]

R. E. Showalter, "Hilbert Space Methods for Partial Differential Equations," Pitman, London-San Francisco, Calif.-Melbourne, 1977.

[19]

C.-L. Tang and X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems, J. Math. Anal. Appl., 275 (2002), 870-882. doi: 10.1016/S0022-247X(02)00442-0.

[20]

K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy. Soc. Edinburgh Sect. A, 85 (1980), 119-129.

[1]

Nikolaos S. Papageorgiou, Vicenšiu D. Rădulescu, Dušan D. Repovš. Robin problems with indefinite linear part and competition phenomena. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1293-1314. doi: 10.3934/cpaa.2017063

[2]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

[3]

Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078

[4]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Two nontrivial solutions for periodic systems with indefinite linear part. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 197-210. doi: 10.3934/dcds.2007.19.197

[5]

Diego Averna, Nikolaos S. Papageorgiou, Elisabetta Tornatore. Multiple solutions for nonlinear nonhomogeneous resonant coercive problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 155-178. doi: 10.3934/dcdss.2018010

[6]

Nobu Kishimoto. Resonant decomposition and the $I$-method for the two-dimensional Zakharov system. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4095-4122. doi: 10.3934/dcds.2013.33.4095

[7]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[8]

Hamid Maarouf. Local Kalman rank condition for linear time varying systems. Mathematical Control and Related Fields, 2022, 12 (2) : 433-446. doi: 10.3934/mcrf.2021029

[9]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[10]

Fabiana Maria Ferreira, Francisco Odair de Paiva. On a resonant and superlinear elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5775-5784. doi: 10.3934/dcds.2019253

[11]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure and Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

[12]

Jianguo Huang, Sen Lin. A $ C^0P_2 $ time-stepping virtual element method for linear wave equations on polygonal meshes. Electronic Research Archive, 2020, 28 (2) : 911-933. doi: 10.3934/era.2020048

[13]

Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semi-local convergence of the Newton-HSS method under the center Lipschitz condition. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 85-99. doi: 10.3934/naco.2019007

[14]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[15]

Thierry Champion, Luigi De Pascale. On the twist condition and $c$-monotone transport plans. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1339-1353. doi: 10.3934/dcds.2014.34.1339

[16]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[17]

Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082

[18]

Henrik Garde, Stratos Staboulis. The regularized monotonicity method: Detecting irregular indefinite inclusions. Inverse Problems and Imaging, 2019, 13 (1) : 93-116. doi: 10.3934/ipi.2019006

[19]

Leyu Hu, Xingju Cai. Convergence of a randomized Douglas-Rachford method for linear system. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 463-474. doi: 10.3934/naco.2020045

[20]

Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 483-492. doi: 10.3934/naco.2019033

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (12)

[Back to Top]