\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling waves and their stability in a coupled reaction diffusion system

Abstract Related Papers Cited by
  • We study the traveling wave solutions to a reaction diffusion system modeling the public goods game with altruistic behaviors. The existence of the waves is derived through monotone iteration of a pair of classical upper- and lower solutions. The waves are shown to be unique and strictly monotonic. A similar KPP wave like asymptotic behaviors are obtained by comparison principle and exponential dichotomy. The stability of the traveling waves with non-critical speed is investigated by spectral analysis in the weighted Banach spaces.
    Mathematics Subject Classification: Primary: 35B35; Secondary: 91B18, 35K57, 35B40, 35P15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Ai, S-N. Chow and Y. Yi, Traveling wave solutions in a tissue interaction model for skin pattern formation, Journal of Dynamics and Differential Equations, 15 (2003), 517-534.doi: doi:10.1023/B:JODY.0000009746.52357.28.

    [2]

    J. C. Alexander, R. A. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew Math., 410 (1990), 167-212.

    [3]

    M. Arias, J. Campos and C. Marcelli, Fastness and continuous dependence in front propagation in Fisher-KPP equations, Discrete and Continuous Dynamical Systems-B, 11 (2009), 11-30.

    [4]

    P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.doi: doi:10.1016/S0022-247X(02)00205-6.

    [5]

    A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations, Journal of Differential Equations, 244 (2008), 1551-1570.doi: doi:10.1016/j.jde.2008.01.004.

    [6]

    E. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, 1955.

    [7]

    N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4 (2003), 503-524.doi: doi:10.1016/S1468-1218(02)00077-9.

    [8]

    Th. Gallay, G. Schneider and H. Uecker, Stable transport of information near essentially unstable localized structures, Discrete and Continuous Dynamical Systems-B, 4 (2004), 349-390.doi: doi:10.3934/dcdsb.2004.4.349.

    [9]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, 840, Springer-Verlag, 1981.

    [10]

    Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model I: Singular Perturbations, Discrete Continuous Dynamical Systems-B, 3 (2003), 79-95.doi: doi:10.3934/dcdsb.2003.3.79.

    [11]

    X. Hou, W. Feng and X. Lu, A mathematical analysis of a pubilc goods games model, Nonlinear Analysis: Real World Applications, 10 (2009), 2207-2224.doi: doi:10.1016/j.nonrwa.2008.04.005.

    [12]

    X. Hou and Y. Li, Local stability of traveling wave solutions of nonlinear reaction diffusion equations, Discrete and Continuous Dynamical Systems-A, 15 (2006), 681-701.doi: doi:10.3934/dcds.2006.15.681.

    [13]

    X. Hou, Y. Li and K. R. Meyer, Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities, Discrete and Continuous Dynamical Systems-A, 26 (2010), 265-290.

    [14]

    W. Huang, Uniqueness of traveling wave solutions for a biological reaction-diffusion equation, J. Math. Anal. Appl., 316 (2006), 42-59.doi: doi:10.1016/j.jmaa.2005.04.084.

    [15]

    J. I Kanel, On the wave front of a competition-diffusion system in popalation dynamics, Nonlinear Analysis: Theory, Methods & Applications, 65 (2006), 301-320.

    [16]

    J. I Kanel and Li Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis: Theory, Methods & Applications, 27 (1996), 579-587.

    [17]

    Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis: Theory, Methods & Applications, 44 (2001), 239-246.

    [18]

    Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion, Nonlinear Analysis: Theory, methods & Applications, 28 (1997), 145-164.

    [19]

    T. Kapitula, On the stability of Traveling waves in weighted $L^\infty$ spaces, Journal of Differential Equations, 112 (1994), 179-215.doi: doi:10.1006/jdeq.1994.1100.

    [20]

    A. Kolmogorov, A. Petrovskii and N. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, Bjul. Moskovskovo Gov. Iniv., 17 (1937), 1-72.

    [21]

    J. Li, Bifurcations of travelling wave solutions for two generalized Boussinesq systems, Science in China Series A, 51 (2008), 1577-1592.doi: doi:10.1007/s11425-008-0038-7.

    [22]

    X. Liao, X. Tang and S. Zhou, Existence of traveling wavefronts in a cooperative systems with discrete delays, Applied Mathematics and Computation, 215 (2009), 1806-1812.doi: doi:10.1016/j.amc.2009.07.032.

    [23]

    S. W. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, Journal of Differential Equations, 237 (2007), 259-277.doi: doi:10.1016/j.jde.2007.03.014.

    [24]

    P. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms, Discrete and Continuous Dynamical Systems-B, 6 (2006), 1175-1189.doi: doi:10.3934/dcdsb.2006.6.1175.

    [25]

    Y. Qi, Travelling fronts of reaction diffusion systems modeling auto-catalysis, Discrete and Continuous Dynamical Systems, suppl. Volume (2009), 622-629.

    [26]

    B. Sandstede, Stability of traveling waves, in "Handbook of Dynamical Systems II" (B Fiedler, ed.). North-Holland (2002), 983-1055.doi: doi:10.1016/S1874-575X(02)80039-X.

    [27]

    D. Sattinger, On the stability of traveling waves of nonlinear parabolic systems, Advances in Mathematics, 22 (1976), 312-355.doi: doi:10.1016/0001-8708(76)90098-0.

    [28]

    M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rat. Mech. Anal., 73 (1980), 69-77.doi: doi:10.1007/BF00283257.

    [29]

    A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems," Transl. Math. Monograhs 140, Amer. Math. Soc., Providence, RI., 1994.

    [30]

    J. Y. Wakano, A mathematical analysis on public goods games in the continuous space, Math. Biosciences, 201 (2006), 72-89.doi: doi:10.1016/j.mbs.2005.12.015.

    [31]

    Z-C. Wang, W-T. Li and S. Ruan, Existence and Stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, Journal of Differential Equations, 238 (2007), 153-200.doi: doi:10.1016/j.jde.2007.03.025.

    [32]

    J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, Journal of Dynamics and Differential Equations, 13 (2001), 51-687, and Erratum to traveling wave fronts of reaction-diffusion systems with delays, Journal of Dynamics and Differential Equations, 20 (2008), 531-533.doi: doi:10.1007/s10884-007-9090-1.

    [33]

    Y. Wu and Y. Li, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations, Discrete Continuous Dynamical Systems-B, 10 (2008), 149-170.doi: doi:10.3934/dcdsb.2008.10.149.

    [34]

    D. Xu and X.Q. Zhao, Bistable waves in an epidemic model, Journal of Dynamics and Differential Equations, 16 (2004), 679-707, and Erratum, Journal of Dynamics and Differential Equations, 17 (2005), 219-247.doi: doi:10.1007/s10884-005-6294-0.

    [35]

    Y.Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations, Discrete and Continuous Dynamical Systems-B, 16 (2006), 47-66.doi: doi:10.3934/dcds.2006.16.47.

    [36]

    X-Q Zhao and W. Wang, Fisher waves in an epidemic model, Discrete and Continuous Dynamical Systems-B, 4 (2004), 1117-1128.doi: doi:10.3934/dcdsb.2004.4.1117.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return