Citation: |
[1] |
S. Ai, S-N. Chow and Y. Yi, Traveling wave solutions in a tissue interaction model for skin pattern formation, Journal of Dynamics and Differential Equations, 15 (2003), 517-534.doi: doi:10.1023/B:JODY.0000009746.52357.28. |
[2] |
J. C. Alexander, R. A. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew Math., 410 (1990), 167-212. |
[3] |
M. Arias, J. Campos and C. Marcelli, Fastness and continuous dependence in front propagation in Fisher-KPP equations, Discrete and Continuous Dynamical Systems-B, 11 (2009), 11-30. |
[4] |
P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.doi: doi:10.1016/S0022-247X(02)00205-6. |
[5] |
A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations, Journal of Differential Equations, 244 (2008), 1551-1570.doi: doi:10.1016/j.jde.2008.01.004. |
[6] |
E. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, 1955. |
[7] |
N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4 (2003), 503-524.doi: doi:10.1016/S1468-1218(02)00077-9. |
[8] |
Th. Gallay, G. Schneider and H. Uecker, Stable transport of information near essentially unstable localized structures, Discrete and Continuous Dynamical Systems-B, 4 (2004), 349-390.doi: doi:10.3934/dcdsb.2004.4.349. |
[9] |
D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, 840, Springer-Verlag, 1981. |
[10] |
Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model I: Singular Perturbations, Discrete Continuous Dynamical Systems-B, 3 (2003), 79-95.doi: doi:10.3934/dcdsb.2003.3.79. |
[11] |
X. Hou, W. Feng and X. Lu, A mathematical analysis of a pubilc goods games model, Nonlinear Analysis: Real World Applications, 10 (2009), 2207-2224.doi: doi:10.1016/j.nonrwa.2008.04.005. |
[12] |
X. Hou and Y. Li, Local stability of traveling wave solutions of nonlinear reaction diffusion equations, Discrete and Continuous Dynamical Systems-A, 15 (2006), 681-701.doi: doi:10.3934/dcds.2006.15.681. |
[13] |
X. Hou, Y. Li and K. R. Meyer, Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities, Discrete and Continuous Dynamical Systems-A, 26 (2010), 265-290. |
[14] |
W. Huang, Uniqueness of traveling wave solutions for a biological reaction-diffusion equation, J. Math. Anal. Appl., 316 (2006), 42-59.doi: doi:10.1016/j.jmaa.2005.04.084. |
[15] |
J. I Kanel, On the wave front of a competition-diffusion system in popalation dynamics, Nonlinear Analysis: Theory, Methods & Applications, 65 (2006), 301-320. |
[16] |
J. I Kanel and Li Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis: Theory, Methods & Applications, 27 (1996), 579-587. |
[17] |
Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis: Theory, Methods & Applications, 44 (2001), 239-246. |
[18] |
Y. Kan-on, Fisher wave fronts for the lotka-volterra competition model with diffusion, Nonlinear Analysis: Theory, methods & Applications, 28 (1997), 145-164. |
[19] |
T. Kapitula, On the stability of Traveling waves in weighted $L^\infty$ spaces, Journal of Differential Equations, 112 (1994), 179-215.doi: doi:10.1006/jdeq.1994.1100. |
[20] |
A. Kolmogorov, A. Petrovskii and N. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, Bjul. Moskovskovo Gov. Iniv., 17 (1937), 1-72. |
[21] |
J. Li, Bifurcations of travelling wave solutions for two generalized Boussinesq systems, Science in China Series A, 51 (2008), 1577-1592.doi: doi:10.1007/s11425-008-0038-7. |
[22] |
X. Liao, X. Tang and S. Zhou, Existence of traveling wavefronts in a cooperative systems with discrete delays, Applied Mathematics and Computation, 215 (2009), 1806-1812.doi: doi:10.1016/j.amc.2009.07.032. |
[23] |
S. W. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, Journal of Differential Equations, 237 (2007), 259-277.doi: doi:10.1016/j.jde.2007.03.014. |
[24] |
P. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms, Discrete and Continuous Dynamical Systems-B, 6 (2006), 1175-1189.doi: doi:10.3934/dcdsb.2006.6.1175. |
[25] |
Y. Qi, Travelling fronts of reaction diffusion systems modeling auto-catalysis, Discrete and Continuous Dynamical Systems, suppl. Volume (2009), 622-629. |
[26] |
B. Sandstede, Stability of traveling waves, in "Handbook of Dynamical Systems II" (B Fiedler, ed.). North-Holland (2002), 983-1055.doi: doi:10.1016/S1874-575X(02)80039-X. |
[27] |
D. Sattinger, On the stability of traveling waves of nonlinear parabolic systems, Advances in Mathematics, 22 (1976), 312-355.doi: doi:10.1016/0001-8708(76)90098-0. |
[28] |
M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rat. Mech. Anal., 73 (1980), 69-77.doi: doi:10.1007/BF00283257. |
[29] |
A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems," Transl. Math. Monograhs 140, Amer. Math. Soc., Providence, RI., 1994. |
[30] |
J. Y. Wakano, A mathematical analysis on public goods games in the continuous space, Math. Biosciences, 201 (2006), 72-89.doi: doi:10.1016/j.mbs.2005.12.015. |
[31] |
Z-C. Wang, W-T. Li and S. Ruan, Existence and Stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, Journal of Differential Equations, 238 (2007), 153-200.doi: doi:10.1016/j.jde.2007.03.025. |
[32] |
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, Journal of Dynamics and Differential Equations, 13 (2001), 51-687, and Erratum to traveling wave fronts of reaction-diffusion systems with delays, Journal of Dynamics and Differential Equations, 20 (2008), 531-533.doi: doi:10.1007/s10884-007-9090-1. |
[33] |
Y. Wu and Y. Li, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations, Discrete Continuous Dynamical Systems-B, 10 (2008), 149-170.doi: doi:10.3934/dcdsb.2008.10.149. |
[34] |
D. Xu and X.Q. Zhao, Bistable waves in an epidemic model, Journal of Dynamics and Differential Equations, 16 (2004), 679-707, and Erratum, Journal of Dynamics and Differential Equations, 17 (2005), 219-247.doi: doi:10.1007/s10884-005-6294-0. |
[35] |
Y.Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations, Discrete and Continuous Dynamical Systems-B, 16 (2006), 47-66.doi: doi:10.3934/dcds.2006.16.47. |
[36] |
X-Q Zhao and W. Wang, Fisher waves in an epidemic model, Discrete and Continuous Dynamical Systems-B, 4 (2004), 1117-1128.doi: doi:10.3934/dcdsb.2004.4.1117. |