Citation: |
[1] |
A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dynamics of microalgae, J. Theoret. Biol., 84 (1980), 189-203. |
[2] |
A. Cunningham and R. M. Nisbet, "Transient and Oscillation in Continuous Culture," in Mathematics in Microbiology, M. J. Bazin, ed., Academic ress, New York, 1983. |
[3] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2. |
[4] |
M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264-272. |
[5] |
E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl., 91 (1983), 131-151.doi: 10.1016/0022-247X(83)90098-7. |
[6] |
E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Am. Math. Soc., 284 (1984), 729-743.doi: 10.1090/S0002-9947-1984-0743741-4. |
[7] |
E. N. Dancer and Y. Du, Positive solutions for a three-species competition system with diffusion I. General existence results, Nonlinear Anal., 254 (1995), 337-357.doi: 10.1016/0362-546X(94)E0063-M. |
[8] |
Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, Nonlinear Dynamics and Evolution Equations, Fields Institute Communications, Vol. 48, American Mathematical Society, (2006), 95-135. |
[9] |
Y. Du and J. Shi, Spatially heterogeneous predator-prey model with protect zone for prey, Journal of Differential Equations, 229 (2006), 63-91.doi: 10.1016/j.jde.2006.01.013. |
[10] |
Y. Du and J. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Am. Math. Soc., 359 (2007), 4557-4593.doi: 10.1090/S0002-9947-07-04262-6. |
[11] |
L. C. Evans, "Partial Differential Equations," American Mathematical Society, 1998. |
[12] |
D. G. Figueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Commun. Part. Diff. Eq., 17 (1992), 339-346.doi: 10.1080/03605309208820844. |
[13] |
J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J. Theoret. Biol., 158 (1992), 409-428. |
[14] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 1983. |
[15] |
S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763.doi: 10.1137/0134064. |
[16] |
S. B. Hsu, Steady states of a system of partial differential equations modeling microbial ecology, SIAM J. Math. Anal., 14 (1983), 1130-1138.doi: 10.1137/0514087. |
[17] |
S. B. Hsu, S. Hubbell and P. Waltman, Mathematical theoy for single nutrient competition in continuous cultures of microorganisms, SIAM J. Appl. Math., 32 (1977), 366-383.doi: 10.1137/0132030. |
[18] |
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unsirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.doi: 10.1137/0153051. |
[19] |
J. Keener, "Principles of Applied Mathematics," Addison-Wesley, Reading, MA, 1987. |
[20] |
M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, 1984. |
[21] |
W. Ruan and W. Feng, On the fixed point index and multiple steady-state solutions of reaction-diffusion systems, Differential Integral Equations, 8 (1995), 371-392. |
[22] |
H. H. Schaefer, "Topological Vector Spaces," Macmillan, New York, 1966. |
[23] |
Junping Shi, Persistence and bifurcation of degenerate solutions, Jour. Funct. Anal., 169 (1999), 494-531.doi: 10.1006/jfan.1999.3483. |
[24] |
H. L. Smith and P. E. Waltman, Competition for a single limiting resouce in continuous culture: the variable-yield model, SIAM J. Appl. Math., 34 (1994), 1113-1131.doi: 10.1137/S0036139993245344. |
[25] |
H. L. Smith and P. E. Waltman, "The Theory of the Chemostat," Cambridge Univ. Press, 1995. |
[26] |
M. X. Wang, "Nonlinear Parabolic Equations," Science Press, Beijing, 1993 (in Chinese). |