-
Previous Article
Vortex interaction dynamics in trapped Bose-Einstein condensates
- CPAA Home
- This Issue
-
Next Article
A decomposition theorem for $BV$ functions
Characterization of the value function of final state constrained control problems with BV trajectories
1. | Laboratoire de Mathématiques et Physique Théorique, Faculté de sciences et Techniques, Université Francois Rabelais, Parc de Grandmont, 37200 Tours, France |
2. | Equipe Commands, ENSTA ParisTech & INRIA Saclay, 32 Boulevard Victor, 75739 Paris cedex 15, France |
References:
[1] |
A. Arutyunov, V. Dykhta and L. Lobo Pereira, Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions, Journal of Optimization Theory and applications, 124 (2005), 55-77.
doi: 10.1007/s10957-004-6465-x. |
[2] |
M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997. |
[3] |
G. Barles, "Solutions de viscosité des équations de Hamilton-Jacobi," Mathématiques et Applications, vol 17, Springer, Paris, 1994. |
[4] |
G. Barles, A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time, C.R. Acad. Sci. Paris, Ser. I, 343 (2006), 173-178. |
[5] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Analysis, 4 (1991), 271-283. |
[6] |
E. N. Barron, Viscosity solutions and analysis in $L^\infty$, Nonlinear analysis, differential equations and control (Montreal, QC, 1998), 1-60, NATO Sci. Ser. C Math. Phys. Sci., 528, Kluwer Acad. Publ., Dordrecht, 1999. |
[7] |
E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, 15 (1990), 1713-1742.
doi: 10.1080/03605309908820745. |
[8] |
J. Baumeister, On optimal control of a fishery, In "Proceedings of NOLCOS'01, volume 5th IFAC Symposium on Nonlinear Control Systems," St Petersburg, Russia, 2001. |
[9] |
O. Bokanowski, E. Cristiani, J. Laurent-Varin and H. Zidani, Hamilton-Jacobi-Bellman approach for the climbing problem,, preprint submitted (http://hal.archives-ouvertes.fr/hal-00537649/fr/)., ().
|
[10] |
A. Bressan, On differential systems with impulsive controls, Rend. Sem. Mat. Univ. Padova, 78 (1987), 227-236. |
[11] |
A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls, Boll. Un. Mat. Ital., 7 (1988), 641-656. |
[12] |
A. Bressan and F. Rampazzo, Impulsive control-systems with commutativity assumptions, Journal of Optimization Theory and Applications, 71 (1991), 67-83.
doi: 10.1007/BF00940040. |
[13] |
A. Bressan and F. Rampazzo, Impulsive control-systems without commutativity assumptions, Journal of Optimization Theory and Applications, 81 (1994), 435-457.
doi: 10.1007/BF02193094. |
[14] |
A. Briani, A Hamilton-Jacobi equation with measures arising in $\Gamma$-convergence of optimal control problems, Differential and Integral Equations, 12 (1999), 849-886. |
[15] |
A. Briani and F. Rampazzo, A density approach to Hamilton-Jacobi equations with t-measurable Hamiltonians, NoDEA-Nonlinear Differential Equations and Applications, 21 (2005), 71-92. |
[16] |
B. Brogliato, "Nonsmooth Impact Mechanics: Models, Dynamics and Control," volume 220 of Lecture Notes in Control and Information Sciences, Springer Verlag, New York, 1996. |
[17] |
C. Clark, F. Clarke and G. Munro, The optimal exploitation of renewable stocks, Econometrica, 47 (1979), 25-47.
doi: 10.2307/1912344. |
[18] |
G. Dal Maso and F. Rampazzo, On systems of ordinary differential equations with measures as controls, Differential and Integral Equations, 4 (1991), 738-765. |
[19] |
V. Dykhta and O. N. Samsonyuk, "Optimal Impulse Control with Applications," Nauka, Moscow, Russia, 1991. |
[20] |
H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM Journal on Control and Optimization, 31 (1993), 257-272.
doi: 10.1137/0331016. |
[21] |
H. Frankowska and S. Plaskacz, A measurable upper semicontinuous viability theorem for tubes, J. of Nonlinear Analysis, TMA, 26 (1996), 565-582.
doi: 10.1016/0362-546X(94)00299-W. |
[22] |
H. Frankowska, S. Plaskacz and T. Rzeuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation, J. Diff. Eqs, 116 (1995), 265-305.
doi: 10.1006/jdeq.1995.1036. |
[23] |
P. Gajardo, C. Ramírez and A. Rappaport, Minimal time sequential batch reactors with bounded and impulse controls for one or more species, SIAM J. Control and Optim., 47 (2008), 2827-2856.
doi: 10.1137/070695204. |
[24] |
H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Facul. Sci. & Eng., 28 (1985), 33-77. |
[25] |
P. L. Lions and B. Perthame, Remarks on Hamilton-Jacobi equations with measurable time-dependent Hamiltonians, Nonlinear analysis, Theory, Methods & Applications, 11 (1987), 613-612. |
[26] |
B. M. Miller, Optimization of dynamic systems with a generalized control, Automation and Remote Control, 50 (1989). |
[27] |
A. Monteillet, Convergence of approximation schemes for nonolocal front propagation equations, Mathematics of Computation, 79 (2010), 125-146.
doi: 10.1090/S0025-5718-09-02270-4. |
[28] |
D. Nunziante, Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with discontinuous time dependence, Differential Integral Equations, 3 (1990), 77-91. |
[29] |
D. Nunziante, Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence, Nonlinear Anal., 18 (1992), 1033-1062.
doi: 10.1016/0362-546X(92)90194-J. |
[30] |
J.-P. Raymond, Optimal control problems in spaces of functions of bounded variation, Differential Integral Equations, 10 (1997), 105-136. |
[31] |
A. V. Sarychev, Nonlinear systems with impulsive and generalised functions controls, Proc. Conf. on NONlinear Synthesis, Sopron, Hungary, 1989. |
[32] |
H. J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. of Probability, 6 (1978), 17-41.
doi: 10.1214/aop/1176995608. |
show all references
References:
[1] |
A. Arutyunov, V. Dykhta and L. Lobo Pereira, Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions, Journal of Optimization Theory and applications, 124 (2005), 55-77.
doi: 10.1007/s10957-004-6465-x. |
[2] |
M. Bardi and I. Capuzzo-Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997. |
[3] |
G. Barles, "Solutions de viscosité des équations de Hamilton-Jacobi," Mathématiques et Applications, vol 17, Springer, Paris, 1994. |
[4] |
G. Barles, A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time, C.R. Acad. Sci. Paris, Ser. I, 343 (2006), 173-178. |
[5] |
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Analysis, 4 (1991), 271-283. |
[6] |
E. N. Barron, Viscosity solutions and analysis in $L^\infty$, Nonlinear analysis, differential equations and control (Montreal, QC, 1998), 1-60, NATO Sci. Ser. C Math. Phys. Sci., 528, Kluwer Acad. Publ., Dordrecht, 1999. |
[7] |
E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations, 15 (1990), 1713-1742.
doi: 10.1080/03605309908820745. |
[8] |
J. Baumeister, On optimal control of a fishery, In "Proceedings of NOLCOS'01, volume 5th IFAC Symposium on Nonlinear Control Systems," St Petersburg, Russia, 2001. |
[9] |
O. Bokanowski, E. Cristiani, J. Laurent-Varin and H. Zidani, Hamilton-Jacobi-Bellman approach for the climbing problem,, preprint submitted (http://hal.archives-ouvertes.fr/hal-00537649/fr/)., ().
|
[10] |
A. Bressan, On differential systems with impulsive controls, Rend. Sem. Mat. Univ. Padova, 78 (1987), 227-236. |
[11] |
A. Bressan and F. Rampazzo, On differential systems with vector-valued impulsive controls, Boll. Un. Mat. Ital., 7 (1988), 641-656. |
[12] |
A. Bressan and F. Rampazzo, Impulsive control-systems with commutativity assumptions, Journal of Optimization Theory and Applications, 71 (1991), 67-83.
doi: 10.1007/BF00940040. |
[13] |
A. Bressan and F. Rampazzo, Impulsive control-systems without commutativity assumptions, Journal of Optimization Theory and Applications, 81 (1994), 435-457.
doi: 10.1007/BF02193094. |
[14] |
A. Briani, A Hamilton-Jacobi equation with measures arising in $\Gamma$-convergence of optimal control problems, Differential and Integral Equations, 12 (1999), 849-886. |
[15] |
A. Briani and F. Rampazzo, A density approach to Hamilton-Jacobi equations with t-measurable Hamiltonians, NoDEA-Nonlinear Differential Equations and Applications, 21 (2005), 71-92. |
[16] |
B. Brogliato, "Nonsmooth Impact Mechanics: Models, Dynamics and Control," volume 220 of Lecture Notes in Control and Information Sciences, Springer Verlag, New York, 1996. |
[17] |
C. Clark, F. Clarke and G. Munro, The optimal exploitation of renewable stocks, Econometrica, 47 (1979), 25-47.
doi: 10.2307/1912344. |
[18] |
G. Dal Maso and F. Rampazzo, On systems of ordinary differential equations with measures as controls, Differential and Integral Equations, 4 (1991), 738-765. |
[19] |
V. Dykhta and O. N. Samsonyuk, "Optimal Impulse Control with Applications," Nauka, Moscow, Russia, 1991. |
[20] |
H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM Journal on Control and Optimization, 31 (1993), 257-272.
doi: 10.1137/0331016. |
[21] |
H. Frankowska and S. Plaskacz, A measurable upper semicontinuous viability theorem for tubes, J. of Nonlinear Analysis, TMA, 26 (1996), 565-582.
doi: 10.1016/0362-546X(94)00299-W. |
[22] |
H. Frankowska, S. Plaskacz and T. Rzeuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation, J. Diff. Eqs, 116 (1995), 265-305.
doi: 10.1006/jdeq.1995.1036. |
[23] |
P. Gajardo, C. Ramírez and A. Rappaport, Minimal time sequential batch reactors with bounded and impulse controls for one or more species, SIAM J. Control and Optim., 47 (2008), 2827-2856.
doi: 10.1137/070695204. |
[24] |
H. Ishii, Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Facul. Sci. & Eng., 28 (1985), 33-77. |
[25] |
P. L. Lions and B. Perthame, Remarks on Hamilton-Jacobi equations with measurable time-dependent Hamiltonians, Nonlinear analysis, Theory, Methods & Applications, 11 (1987), 613-612. |
[26] |
B. M. Miller, Optimization of dynamic systems with a generalized control, Automation and Remote Control, 50 (1989). |
[27] |
A. Monteillet, Convergence of approximation schemes for nonolocal front propagation equations, Mathematics of Computation, 79 (2010), 125-146.
doi: 10.1090/S0025-5718-09-02270-4. |
[28] |
D. Nunziante, Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with discontinuous time dependence, Differential Integral Equations, 3 (1990), 77-91. |
[29] |
D. Nunziante, Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence, Nonlinear Anal., 18 (1992), 1033-1062.
doi: 10.1016/0362-546X(92)90194-J. |
[30] |
J.-P. Raymond, Optimal control problems in spaces of functions of bounded variation, Differential Integral Equations, 10 (1997), 105-136. |
[31] |
A. V. Sarychev, Nonlinear systems with impulsive and generalised functions controls, Proc. Conf. on NONlinear Synthesis, Sopron, Hungary, 1989. |
[32] |
H. J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. of Probability, 6 (1978), 17-41.
doi: 10.1214/aop/1176995608. |
[1] |
Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 |
[2] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[3] |
Martino Bardi, Yoshikazu Giga. Right accessibility of semicontinuous initial data for Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2003, 2 (4) : 447-459. doi: 10.3934/cpaa.2003.2.447 |
[4] |
Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 |
[5] |
Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 |
[6] |
Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 |
[7] |
Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022061 |
[8] |
Xia Li. Long-time asymptotic solutions of convex hamilton-jacobi equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5151-5162. doi: 10.3934/dcds.2017223 |
[9] |
Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176 |
[10] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[11] |
Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i |
[12] |
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 |
[13] |
Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 |
[14] |
Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic and Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255 |
[15] |
Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647 |
[16] |
Antonio Avantaggiati, Paola Loreti, Cristina Pocci. Mixed norms, functional Inequalities, and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1855-1867. doi: 10.3934/dcdsb.2014.19.1855 |
[17] |
Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167 |
[18] |
David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 |
[19] |
Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 |
[20] |
Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]