Citation: |
[1] |
L. M. Pismen, "Vortices in Nonlinear Fields," Oxford Science Publications, Oxford, 1999. |
[2] |
A. J. Chorin and J. E. Marsden, "A Mathematical Introduction to Fluid Mechanics," Springer-Verlag, New York, 1993. |
[3] |
Yu. S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davies and L. M. Pismen, Dynamics of optical vortex solitons, Opt. Commun., 152 (1998), 198-206.doi: 10.1016/S0030-4018(98)00149-7. |
[4] |
A. Dreischuh, S. Chevrenkov, D. Neshev, G. G. Paulus and H. Walther, Generation of lattice structures of optical vortices, J. Opt. Soc. Am. B, 19 (2002), 550-556.doi: 10.1364/JOSAB.19.000550. |
[5] |
A. S. Desyatnikov, Yu. S. Kivshar and L. Torner, Optical vortices and vortex solitons, Prog. Optics, 47 (2005), 291-391.doi: 10.1016/S0079-6638(05)47006-7. |
[6] |
L. P. Pitaevskii and S. Stringari, "Bose-Einstein Condensation," Oxford University Press, Oxford, 2003. |
[7] |
C. J. Pethick and H. Smith, "Bose-Einstein Condensation in Dilute Gases," Cambridge University Press, Cambridge, 2002. |
[8] |
P. G. Kevrekidis, D. J. Frantzeskakis and R. Carretero-González, "Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Theory and Experiment," Springer-Verlag, Berlin, 2008.doi: 10.1007/978-3-540-73591-5_1. |
[9] |
A. L. Fetter and A. A. Svidzinksy, Vortices in a trapped dilute Bose-Einstein condensate, J. Phys.: Cond. Matt., 13 (2001), R135-R194.doi: 10.1088/0953-8984/13/12/201. |
[10] |
P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis and I. G. Kevrekidis, Vortices in Bose-Einstein condensates: some recent developments, Mod. Phys. Lett. B, 18 (2004), 1481-1505.doi: 10.1142/S0217984904007967. |
[11] |
P. K. Newton and G. Chamoun, Vortex lattice theory: A particle interaction perspective, SIAM Rev., 51 (2009), 501-542.doi: 10.1137/07068597X. |
[12] |
R. Carretero-González, P. G. Kevrekidis and D. J. Frantzeskakis, Nonlinear waves in Bose-Einstein condensates: physical relevance and mathematical techniques, Nonlinearity, 21 (2008), R139-R202.doi: 10.1088/0951-7715/21/7/R01. |
[13] |
A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys., 81 (2009), 647-691.doi: 10.1103/RevModPhys.81.647. |
[14] |
M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman and E. A. Cornell, Vortices in a Bose-Einstein condensate, Phys. Rev. Lett., 83 (1999), 2498-2501.doi: 10.1103/PhysRevLett.83.2498. |
[15] |
K. W. Madison, F. Chevy, V. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation, Phys. Rev. Lett., 86 (2001), 4443-4446.doi: 10.1103/PhysRevLett.86.4443. |
[16] |
K. W. Madison, F. Chevy, W. Wohlleben and J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate, Phys. Rev. Lett., 84 (2000), 806-809.doi: 10.1103/PhysRevLett.84.806. |
[17] |
A. Recati, F. Zambelli and S. Stringari, Overcritical rotation of a trapped Bose-Einstein condensate, Phys. Rev. Lett., 86 (2001), 377-380.doi: 10.1103/PhysRevLett.86.377. |
[18] |
S. Sinha and Y. Castin, Dynamic instability of a Rotating Bose-Einstein condensate, Phys. Rev. Lett., 87 (2001), 190402.doi: 10.1103/PhysRevLett.87.190402. |
[19] |
C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu and W. Ketterle, Vortex nucleation in a Stirred Bose-Einstein condensate, Phys. Rev. Lett., 87 (2001), 210402.doi: 10.1103/PhysRevLett.87.210402. |
[20] |
D. R. Scherer, C. N. Weiler, T. W. Neely and B. P. Anderson, Vortex formation by merging of multiple trapped Bose-Einstein condensates, Phys. Rev. Lett., 98 (2007), 110402.doi: 10.1103/PhysRevLett.98.110402. |
[21] |
R. Carretero-González, N. Whitaker, P. G. Kevrekidis and D. J. Frantzeskakis, Vortex structures formed by the interference of sliced condensates, Phys. Rev. A, 77 (2008), 023605.doi: 10.1103/PhysRevA.77.023605. |
[22] |
R. Carretero-González, B. P. Anderson, P. G. Kevrekidis, D. J. Frantzeskakis and C. N. Weiler, Dynamics of vortex formation in merging Bose-Einstein condensate fragments, Phys. Rev. A, 77 (2008), 033625.doi: 10.1103/PhysRevA.77.033625. |
[23] |
G. Ruben, D. M. Paganin and M. J. Morgan, Vortex-lattice formation and melting in a nonrotating Bose-Einstein condensate, Phys. Rev. A, 78 (2008), 013631.doi: 10.1103/PhysRevA.78.013631. |
[24] |
C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis and B. P. Anderson, Spontaneous vortices in the formation of Bose-Einstein condensates, Nature, 455 (2008), 948-951.doi: 10.1038/nature07334. |
[25] |
A. E. Leanhardt, A. Görlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard and W. Ketterle, Imprinting vortices in a Bose-Einstein condensate using topological phases, Phys. Rev. Lett., 89 (2002), 190403.doi: 10.1103/PhysRevLett.89.190403. |
[26] |
Y. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner, A. E. Leanhardt, M. Prentiss, D. E. Pritchard and W. Ketterle, Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate, Phys. Rev. Lett., 93 (2004), 160406.doi: 10.1103/PhysRevLett.93.160406. |
[27] |
T. Isoshima, M. Okano, H. Yasuda, K. Kasa, J. A. M. Huhtamäki, M. Kumakura and Y. Takahashi, Spontaneous splitting of a quadruply charged vortex, Phys. Rev. Lett., 99 (2007), 200403.doi: 10.1103/PhysRevLett.99.200403. |
[28] |
L.-C. Crasovan, V. Vekslerchik, V. M. Pérez-García, J. P. Torres, D. Mihalache and L. Torner, Stable vortex dipoles in nonrotating Bose-Einstein condensates, Phys. Rev. A, 68 (2003), 063609.doi: 10.1103/PhysRevA.68.063609. |
[29] |
M. Möttönen, S. M. M. Virtanen, T. Isoshima and M. M. Salomaa, Stationary vortex clusters in nonrotating Bose-Einstein condensates, Phys. Rev. A, 71 (2005), 033626.doi: 10.1103/PhysRevA.71.033626. |
[30] |
V. Pietilä, M. Möttönen, T. Isoshima, J. A. M. Huhtamäki and S. M. M. Virtanen, Stability and dynamics of vortex clusters in nonrotated Bose-Einstein condensates, Phys. Rev. A, 74 (2006), 023603.doi: 10.1103/PhysRevA.74.023603. |
[31] |
A. Klein, D. Jaksch, Y. Zhang and W. Bao, Dynamics of vortices in weakly interacting Bose-Einstein condensates, Phys. Rev. A, 76 (2007), 043602.doi: 10.1103/PhysRevA.76.043602. |
[32] |
W. Li, M. Haque and S. Komineas, Vortex dipole in a trapped two-dimensional Bose-Einstein condensate, Phys. Rev. A, 77 (2008), 053610.doi: 10.1103/PhysRevA.77.053610. |
[33] |
J.-P. Martikainen, K.-A. Suominen, L. Santos, T. Schulte and A. Sanpera, Generation and evolution of vortex-antivortex pairs in Bose-Einstein condensates, Phys. Rev. A, 64 (2001), 063602.doi: 10.1103/PhysRevA.64.063602. |
[34] |
T. Schulte, L. Santos, A. Sanpera and M. Lewenstein, Vortex-vortex interactions in toroidally trapped Bose-Einstein condensates, Phys. Rev. A, 66 (2002), 033602.doi: 10.1103/PhysRevA.66.033602. |
[35] |
S. McEndoo and Th. Busch, Small numbers of vortices in anisotropic traps, Phys. Rev. A, 79 (2009), 053616.doi: 10.1103/PhysRevA.79.053616. |
[36] |
T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis and B. P. Anderson, Observation of vortex dipoles in an oblate Bose-Einstein condensate, Phys. Rev. Lett., 104 (2010), 160401.doi: 10.1103/PhysRevLett.104.160401. |
[37] |
J. A. Seman, E. A. L. Henn, M. Haque, R. F. Shiozaki, E. R. F. Ramos, M. Caracanhas, P. Castilho, C. Castelo Branco, K. M. F. Magalhães and V. S. Bagnato, Three-vortex configurations in trapped Bose-Einstein condensates, Phys. Rev. A, 82 (2010), 033616.doi: 10.1103/PhysRevA.82.033616. |
[38] |
D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin and D. S. Hall, Real-time dynamics of single vortex lines and vortex dipoles in a Bose-Einstein condensate, Science, 329 (2010), 1182-1185.doi: 10.1126/science.1191224. |
[39] |
S. Middelkamp, P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González and P. Schmelcher, Bifurcations, stability and dynamics of multiple matter-wave vortex states, Phys. Rev. A, 82 (2010), 013646.doi: 10.1103/PhysRevA.82.013646. |
[40] |
B. Jackson, J. F. McCann and C. S. Adams, Vortex line and ring dynamics in trapped Bose-Einstein condensates, Phys. Rev. A, 61 (1999), 013604.doi: 10.1103/PhysRevA.61.013604. |
[41] |
A. A. Svidzinsky and A. L. Fetter, Stability of a vortex in a trapped Bose-Einstein condensate, Phys. Rev. Lett., 84 (2000), 5919-5923.doi: 10.1103/PhysRevLett.84.5919. |
[42] |
J. Tempere and J. T. Devreese, Vortex dynamics in a parabolically confined Bose-Einstein condensate, Solid State Comm., 113 (2000), 471-474.doi: 10.1016/S0038-1098(99)00495-0. |
[43] |
B. P. Anderson, P. C. Haljan, C. E. Wieman and E. A. Cornell, Vortex precession in Bose-Einstein condensates: observations with filled and empty cores, Phys. Rev. Lett., 85 (2000), 2857-2860.doi: 10.1103/PhysRevLett.85.2857. |
[44] |
S. Middelkamp, P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González and P. Schmelcher, Stability and dynamics of matter-wave vortices in the presence of collisional inhomogeneities and dissipative perturbations, J. Phys. B: At. Mo. Opt. Phys., 43 (2010), 155303.doi: 10.1088/0953-4075/43/15/155303. |
[45] |
A. Ambrosetti and V. Coti Zelati, "Periodic Solutions of Singular Lagrangian Systems," Birkhäuser Boston, Boston, MA, 1993. |
[46] |
A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: a topological degree approach, J. Differential Equations, 244 (2008), 3235-3264.doi: 10.1016/j.jde.2007.11.005. |
[47] |
A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: the repulsive case, To appear in Adv. Nonlinear Stud., 2011. Preprint available at http://www.dmi.units.it/$\sim$fonda/pubblicazioni.html. |
[48] |
A. Fonda and A. J. Ureña, Periodic, subharmonic and quasi-periodic oscillations under the action of a central force, Discrete Cont. Dyn. Syst. A, 29 (2011), 169-192.doi: 10.3934/dcds.2011.29.169. |
[49] |
P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Diff. Eq., 190 (2003), 643-662.doi: 10.1016/S0022-0396(02)00152-3. |
[50] |
M. A. Krasnoselskii, "Positive Solutions of Operator Equations," Groningen: Noordhoff, 1964. |
[51] |
W. Magnus and S. Winkler, "Hill's Equation," Dover, New York, 1979. |
[52] |
V. M. Starzinskii, A survey of works on conditions of stability of the trivial solution of a system of linear differential equations with periodic coefficients, Amer. Math. Soc. Transl. Ser. 2, 1 (1955), 189-237. |
[53] |
C. L. Siegel and J. K. Moser, "Lectures on Celestial Mechanics," Springer-Verlag, New York. Berlin, 1971. |
[54] |
V. Arnold, "Les Méthodes Matémathiques de la Mécanique Classique," Mir. Moscow, 1976. |
[55] |
J. Möser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II (1962), 1-20. |
[56] |
S. E. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math., 99 (1977), 1061-1087.doi: 10.2307/2374000. |
[57] |
C. Genecand, Transversal homoclinic orbits near elliptic fixed points of area-preserving diffeomorphisms of the plane, in "Dynam. Report. Expositions Dynam. Systems" (N.S.), 2, Springer, Berlin, 1993. |
[58] |
P. J. Torres, Twist solutions of a Hill's equation with singular term, Adv. Nonlinear Stud., 2 (2002), 279-287.doi: 10.1016/j.jmaa.2009.02.033. |
[59] |
A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. Math., 152 (2000), 881-901.doi: 10.2307/2661357. |