# American Institute of Mathematical Sciences

January  2011, 10(1): 161-177. doi: 10.3934/cpaa.2011.10.161

## Blowing up at zero points of potential for an initial boundary value problem

 1 Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui, Taipei County 25137, Taiwan 2 National Center for Theoretical Sciences, Taipei Office, 1, S-4, Roosevelt Road, Taipei 10617, Taiwan

Received  January 2010 Revised  May 2010 Published  November 2010

We study nonnegative radially symmetric solutions for a semilinear heat equation in a ball with spatially dependent coefficient which vanishes at the origin. Our aim is to construct a solution that blows up at the origin where there is no reaction. For this, we first prove that the blow-up is complete, if the origin is not a blow-up point and if there is no blow-up point on the boundary. Then we prove that a threshold solution exists such that it blows up in finite time incompletely and there is no blow-up point on the boundary. On the other hand, we prove that any zero of nonnegative potential is not a blow-up point for a more general problem under the assumption that the solution is monotone in time.
Citation: Jong-Shenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure and Applied Analysis, 2011, 10 (1) : 161-177. doi: 10.3934/cpaa.2011.10.161
 [1] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254. doi: doi:10.1007/BF02774019. [2] P. Baras and L. Cohen, Complete blow-up after $T_{m a x}$ for the solution of a semilinear heat equation, J. Funct. Anal., 71 (1987), 142-174. doi: doi:10.1016/0022-1236(87)90020-6. [3] X.Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190. doi: doi:10.1016/0022-0396(89)90081-8. [4] X. Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. Reine Angew. Math., 472 (1996), 17-51. doi: doi:10.1515/crll.1996.472.17. [5] L. Du and Z. Yao, Localization of blow-up points for a nonlinear nonlocal porous medium equation, Commun. Pure Appl. Anal., 6 (2007), 183-190. [6] S. Filippas and A. Tertikas, On similarity solutions of a heat equation with a nonhomogeneous nonlinearity, J. Differential Equations, 165 (2000), 468-492. doi: doi:10.1006/jdeq.2000.3789. [7] A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447. doi: doi:10.1512/iumj.1985.34.34025. [8] H. Fujita, On the nonlinear equations $\Delta u+exp u=0$ and $u_t=\Delta u+exp u$, Bull. Amer. Math. Soc., 75 (1969), 132-135. doi: doi:10.1090/S0002-9904-1969-12175-0. [9] V. A. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Applied Math., 50 (1997), 1-67. doi: doi:10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H. [10] N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: dynamic case, Nonlinear Diff. Eqns. Appl., 15 (2008), 115-145. doi: doi:10.1007/s00030-007-6004-1. [11] Y. Giga and R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319. doi: doi:10.1002/cpa.3160380304. [12] Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40. doi: doi:10.1512/iumj.1987.36.36001. [13] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884. doi: doi:10.1002/cpa.3160420607. [14] J. S. Guo, C. S. Lin and M. Shimojo, Blow-up behavior for a parabolic equation with spatially dependent coefficient, Dynamic Systems Appl. (to appear). [15] T. Hamada, On the existence and nonexistence of global solutions of semilinear parabolic equations with slowly decaying initial data, Tsukuba J. Math., 21 (1997), 505-514. [16] S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), 305-330. doi: doi:10.1002/cpa.3160160307. [17] A. A. Lacey and D. Tzanetis, Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition, IMA. J. Appl. Math., 41 (1988), 207-215. doi: doi:10.1093/imamat/41.3.207. [18] L. A. Lepin, Countable spectrum of the eigenfunctions of the nonlinear heat equation with distributed parameters, (Russian) Differentsial'nye Uravneniya, 24 (1988), 1226-1234, (English Translation: Differential Equations, 24 (1988), 799-805. [19] L. A. Lepin, Self-similar solutions of a semilinear heat equation, (Russian) Mat. Model., 2 (1990), 63-74. [20] H. Matano and F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541. doi: doi:10.1002/cpa.20044. [21] H. Matano and F. Merle, Classification of type I and type II blowup for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064. doi: doi:10.1016/j.jfa.2008.05.021. [22] J. Matos, Unfocused blow up solutions of semilinear parabolic equations, Discrete Contin. Dynam. Systems, 5 (1999), 905-928. doi: doi:10.3934/dcds.1999.5.905. [23] J. Matos, Self-similar blow up patterns in supercritical semilinear heat equations, Comm. Appl. Anal., 5 (2001), 455-483. [24] F. Merle, H. Zaag, Stability of the blow-up profile for equations of the type $u_t=\Delta u+ |u|^{p-1}u, Duke Math. J., 86 (1997), 143-195. doi: doi:10.1215/S0012-7094-97-08605-1. [25] N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its application, Indiana Univ. Math. J., 54 (2005), 1047-1059. doi: doi:10.1512/iumj.2005.54.2694. [26] N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation, Indiana Univ. Math. J., 50 (2001), 591-610. [27] W. M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations, 54 (1984), 97-120. doi: doi:10.1016/0022-0396(84)90145-1. [28] W. M. Ni, Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations, Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), 229-241, Proc. Sympos. Pure Math., 45, Part 2, Amer. Math. Soc., Providence, RI, 1986. [29] R. G. Pinsky, Existence and nonexistence of global solutions for$u_ t=\Delta u+a(x)u^p$in$\mathbb{R}^{d}$, J. Differential Equations, 133 (1997), 152-177. doi: doi:10.1006/jdeq.1996.3196. [30] P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts, Basler Lehrbücher, 2007. [31] A. Ramiandrisoa, Blow-up profile for radial solutions of the nonlinear heat equation, Asymp. Anal., 21 (1999), 221-238. [32] S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation, J. Differential Equations, 246 (2009), 724-748. doi: doi:10.1016/j.jde.2008.09.004. [33] X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590. doi: doi:10.2307/2154232. show all references ##### References:  [1] H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254. doi: doi:10.1007/BF02774019. [2] P. Baras and L. Cohen, Complete blow-up after$T_{m a x}$for the solution of a semilinear heat equation, J. Funct. Anal., 71 (1987), 142-174. doi: doi:10.1016/0022-1236(87)90020-6. [3] X.Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190. doi: doi:10.1016/0022-0396(89)90081-8. [4] X. Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. Reine Angew. Math., 472 (1996), 17-51. doi: doi:10.1515/crll.1996.472.17. [5] L. Du and Z. Yao, Localization of blow-up points for a nonlinear nonlocal porous medium equation, Commun. Pure Appl. Anal., 6 (2007), 183-190. [6] S. Filippas and A. Tertikas, On similarity solutions of a heat equation with a nonhomogeneous nonlinearity, J. Differential Equations, 165 (2000), 468-492. doi: doi:10.1006/jdeq.2000.3789. [7] A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447. doi: doi:10.1512/iumj.1985.34.34025. [8] H. Fujita, On the nonlinear equations$\Delta u+exp u=0$and$u_t=\Delta u+exp u$, Bull. Amer. Math. Soc., 75 (1969), 132-135. doi: doi:10.1090/S0002-9904-1969-12175-0. [9] V. A. Galaktionov and J. L. Vázquez, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Applied Math., 50 (1997), 1-67. doi: doi:10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H. [10] N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices II: dynamic case, Nonlinear Diff. Eqns. Appl., 15 (2008), 115-145. doi: doi:10.1007/s00030-007-6004-1. [11] Y. Giga and R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319. doi: doi:10.1002/cpa.3160380304. [12] Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40. doi: doi:10.1512/iumj.1987.36.36001. [13] Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884. doi: doi:10.1002/cpa.3160420607. [14] J. S. Guo, C. S. Lin and M. Shimojo, Blow-up behavior for a parabolic equation with spatially dependent coefficient, Dynamic Systems Appl. (to appear). [15] T. Hamada, On the existence and nonexistence of global solutions of semilinear parabolic equations with slowly decaying initial data, Tsukuba J. Math., 21 (1997), 505-514. [16] S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), 305-330. doi: doi:10.1002/cpa.3160160307. [17] A. A. Lacey and D. Tzanetis, Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition, IMA. J. Appl. Math., 41 (1988), 207-215. doi: doi:10.1093/imamat/41.3.207. [18] L. A. Lepin, Countable spectrum of the eigenfunctions of the nonlinear heat equation with distributed parameters, (Russian) Differentsial'nye Uravneniya, 24 (1988), 1226-1234, (English Translation: Differential Equations, 24 (1988), 799-805. [19] L. A. Lepin, Self-similar solutions of a semilinear heat equation, (Russian) Mat. Model., 2 (1990), 63-74. [20] H. Matano and F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541. doi: doi:10.1002/cpa.20044. [21] H. Matano and F. Merle, Classification of type I and type II blowup for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064. doi: doi:10.1016/j.jfa.2008.05.021. [22] J. Matos, Unfocused blow up solutions of semilinear parabolic equations, Discrete Contin. Dynam. Systems, 5 (1999), 905-928. doi: doi:10.3934/dcds.1999.5.905. [23] J. Matos, Self-similar blow up patterns in supercritical semilinear heat equations, Comm. Appl. Anal., 5 (2001), 455-483. [24] F. Merle, H. Zaag, Stability of the blow-up profile for equations of the type$u_t=\Delta u+ |u|^{p-1}u, Duke Math. J., 86 (1997), 143-195. doi: doi:10.1215/S0012-7094-97-08605-1. [25] N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation and its application, Indiana Univ. Math. J., 54 (2005), 1047-1059. doi: doi:10.1512/iumj.2005.54.2694. [26] N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear parabolic equation, Indiana Univ. Math. J., 50 (2001), 591-610. [27] W. M. Ni, P. E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential Equations, 54 (1984), 97-120. doi: doi:10.1016/0022-0396(84)90145-1. [28] W. M. Ni, Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations, Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), 229-241, Proc. Sympos. Pure Math., 45, Part 2, Amer. Math. Soc., Providence, RI, 1986. [29] R. G. Pinsky, Existence and nonexistence of global solutions for $u_ t=\Delta u+a(x)u^p$ in $\mathbb{R}^{d}$, J. Differential Equations, 133 (1997), 152-177. doi: doi:10.1006/jdeq.1996.3196. [30] P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts, Basler Lehrbücher, 2007. [31] A. Ramiandrisoa, Blow-up profile for radial solutions of the nonlinear heat equation, Asymp. Anal., 21 (1999), 221-238. [32] S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation, J. Differential Equations, 246 (2009), 724-748. doi: doi:10.1016/j.jde.2008.09.004. [33] X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590. doi: doi:10.2307/2154232.
 [1] Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 [2] Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 [3] Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025 [4] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [5] Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 [6] Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585 [7] Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 [8] Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617 [9] Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 [10] Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 [11] Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 891-907. doi: 10.3934/dcds.2015.35.891 [12] Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4847-4885. doi: 10.3934/dcds.2021060 [13] Baiyu Liu, Li Ma. Blow up threshold for a parabolic type equation involving space integral and variational structure. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2169-2183. doi: 10.3934/cpaa.2015.14.2169 [14] Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2607-2623. doi: 10.3934/dcdss.2021032 [15] Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 [16] Jinmyong An, Roesong Jang, Jinmyong Kim. Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022111 [17] Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831 [18] Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 [19] Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072 [20] Wenhui Chen, Alessandro Palmieri. A blow – up result for the semilinear Moore – Gibson – Thompson equation with nonlinearity of derivative type in the conservative case. Evolution Equations and Control Theory, 2021, 10 (4) : 673-687. doi: 10.3934/eect.2020085

2021 Impact Factor: 1.273